Click or drag to resize

DGEBRDRun Method

Purpose ======= DGEBRD reduces a general real M-by-N matrix A to upper or lower bidiagonal form B by an orthogonal transformation: Q**T * A * P = B. If m .GE. n, B is upper bidiagonal; if m .LT. n, B is lower bidiagonal.

Namespace: DotNumerics.LinearAlgebra.CSLapack
Assembly: DWSIM.MathOps.DotNumerics (in DWSIM.MathOps.DotNumerics.dll) Version: 1.0.0.0 (1.0.0.0)
Syntax
public void Run(
	int M,
	int N,
	ref double[] A,
	int offset_a,
	int LDA,
	ref double[] D,
	int offset_d,
	ref double[] E,
	int offset_e,
	ref double[] TAUQ,
	int offset_tauq,
	ref double[] TAUP,
	int offset_taup,
	ref double[] WORK,
	int offset_work,
	int LWORK,
	ref int INFO
)
Request Example View Source

Parameters

M  Int32
(input) INTEGER The number of rows in the matrix A. M .GE. 0.
N  Int32
(input) INTEGER The number of columns in the matrix A. N .GE. 0.
A  Double
(input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the M-by-N general matrix to be reduced. On exit, if m .GE. n, the diagonal and the first superdiagonal are overwritten with the upper bidiagonal matrix B; the elements below the diagonal, with the array TAUQ, represent the orthogonal matrix Q as a product of elementary reflectors, and the elements above the first superdiagonal, with the array TAUP, represent the orthogonal matrix P as a product of elementary reflectors; if m .LT. n, the diagonal and the first subdiagonal are overwritten with the lower bidiagonal matrix B; the elements below the first subdiagonal, with the array TAUQ, represent the orthogonal matrix Q as a product of elementary reflectors, and the elements above the diagonal, with the array TAUP, represent the orthogonal matrix P as a product of elementary reflectors. See Further Details.
offset_a  Int32
 
LDA  Int32
(input) INTEGER The leading dimension of the array A. LDA .GE. max(1,M).
D  Double
(output) DOUBLE PRECISION array, dimension (min(M,N)) The diagonal elements of the bidiagonal matrix B: D(i) = A(i,i).
offset_d  Int32
 
E  Double
(output) DOUBLE PRECISION array, dimension (min(M,N)-1) The off-diagonal elements of the bidiagonal matrix B: if m .GE. n, E(i) = A(i,i+1) for i = 1,2,...,n-1; if m .LT. n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
offset_e  Int32
 
TAUQ  Double
(output) DOUBLE PRECISION array dimension (min(M,N)) The scalar factors of the elementary reflectors which represent the orthogonal matrix Q. See Further Details.
offset_tauq  Int32
 
TAUP  Double
(output) DOUBLE PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors which represent the orthogonal matrix P. See Further Details.
offset_taup  Int32
 
WORK  Double
(workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
offset_work  Int32
 
LWORK  Int32
(input) INTEGER The length of the array WORK. LWORK .GE. max(1,M,N). For optimum performance LWORK .GE. (M+N)*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO  Int32
(output) INTEGER = 0: successful exit .LT. 0: if INFO = -i, the i-th argument had an illegal value.
See Also