Click or drag to resize

DGEHD2Run Method

Purpose ======= DGEHD2 reduces a real general matrix A to upper Hessenberg form H by an orthogonal similarity transformation: Q' * A * Q = H .

Namespace: DotNumerics.LinearAlgebra.CSLapack
Assembly: DWSIM.MathOps.DotNumerics (in DWSIM.MathOps.DotNumerics.dll) Version: 1.0.0.0 (1.0.0.0)
Syntax
public void Run(
	int N,
	int ILO,
	int IHI,
	ref double[] A,
	int offset_a,
	int LDA,
	ref double[] TAU,
	int offset_tau,
	ref double[] WORK,
	int offset_work,
	ref int INFO
)
Request Example View Source

Parameters

N  Int32
(input) INTEGER The order of the matrix A. N .GE. 0.
ILO  Int32
(input) INTEGER
IHI  Int32
(input) INTEGER It is assumed that A is already upper triangular in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally set by a previous call to DGEBAL; otherwise they should be set to 1 and N respectively. See Further Details. 1 .LE. ILO .LE. IHI .LE. max(1,N).
A  Double
(input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the n by n general matrix to be reduced. On exit, the upper triangle and the first subdiagonal of A are overwritten with the upper Hessenberg matrix H, and the elements below the first subdiagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors. See Further Details.
offset_a  Int32
 
LDA  Int32
(input) INTEGER The leading dimension of the array A. LDA .GE. max(1,N).
TAU  Double
(output) DOUBLE PRECISION array, dimension (N-1) The scalar factors of the elementary reflectors (see Further Details).
offset_tau  Int32
 
WORK  Double
(workspace) DOUBLE PRECISION array, dimension (N)
offset_work  Int32
 
INFO  Int32
(output) INTEGER = 0: successful exit. .LT. 0: if INFO = -i, the i-th argument had an illegal value.
See Also