Click or drag to resize

DGELQFRun Method

Purpose ======= DGELQF computes an LQ factorization of a real M-by-N matrix A: A = L * Q.

Namespace: DotNumerics.LinearAlgebra.CSLapack
Assembly: DWSIM.MathOps.DotNumerics (in DWSIM.MathOps.DotNumerics.dll) Version: 1.0.0.0 (1.0.0.0)
Syntax
public void Run(
	int M,
	int N,
	ref double[] A,
	int offset_a,
	int LDA,
	ref double[] TAU,
	int offset_tau,
	ref double[] WORK,
	int offset_work,
	int LWORK,
	ref int INFO
)
Request Example View Source

Parameters

M  Int32
(input) INTEGER The number of rows of the matrix A. M .GE. 0.
N  Int32
(input) INTEGER The number of columns of the matrix A. N .GE. 0.
A  Double
(input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, the elements on and below the diagonal of the array contain the m-by-min(m,n) lower trapezoidal matrix L (L is lower triangular if m .LE. n); the elements above the diagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors (see Further Details).
offset_a  Int32
 
LDA  Int32
(input) INTEGER The leading dimension of the array A. LDA .GE. max(1,M).
TAU  Double
(output) DOUBLE PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details).
offset_tau  Int32
 
WORK  Double
(workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
offset_work  Int32
 
LWORK  Int32
(input) INTEGER The dimension of the array WORK. LWORK .GE. max(1,M). For optimum performance LWORK .GE. M*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO  Int32
(output) INTEGER = 0: successful exit .LT. 0: if INFO = -i, the i-th argument had an illegal value
See Also