Purpose
=======
DGEQP3 computes a QR factorization with column pivoting of a
matrix A: A*P = Q*R using Level 3 BLAS.
Namespace: DotNumerics.LinearAlgebra.CSLapackAssembly: DWSIM.MathOps.DotNumerics (in DWSIM.MathOps.DotNumerics.dll) Version: 1.0.0.0 (1.0.0.0)
Syntax public void Run(
int M,
int N,
ref double[] A,
int offset_a,
int LDA,
ref int[] JPVT,
int offset_jpvt,
ref double[] TAU,
int offset_tau,
ref double[] WORK,
int offset_work,
int LWORK,
ref int INFO
)
Public Sub Run (
M As Integer,
N As Integer,
ByRef A As Double(),
offset_a As Integer,
LDA As Integer,
ByRef JPVT As Integer(),
offset_jpvt As Integer,
ByRef TAU As Double(),
offset_tau As Integer,
ByRef WORK As Double(),
offset_work As Integer,
LWORK As Integer,
ByRef INFO As Integer
)
Request Example
View SourceParameters
- M Int32
-
(input) INTEGER
The number of rows of the matrix A. M .GE. 0.
- N Int32
-
(input) INTEGER
The number of columns of the matrix A. N .GE. 0.
- A Double
-
(input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the upper triangle of the array contains the
min(M,N)-by-N upper trapezoidal matrix R; the elements below
the diagonal, together with the array TAU, represent the
orthogonal matrix Q as a product of min(M,N) elementary
reflectors.
- offset_a Int32
-
- LDA Int32
-
(input) INTEGER
The leading dimension of the array A. LDA .GE. max(1,M).
- JPVT Int32
-
(input/output) INTEGER array, dimension (N)
On entry, if JPVT(J).ne.0, the J-th column of A is permuted
to the front of A*P (a leading column); if JPVT(J)=0,
the J-th column of A is a free column.
On exit, if JPVT(J)=K, then the J-th column of A*P was the
the K-th column of A.
- offset_jpvt Int32
-
- TAU Double
-
(output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors.
- offset_tau Int32
-
- WORK Double
-
(workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
On exit, if INFO=0, WORK(1) returns the optimal LWORK.
- offset_work Int32
-
- LWORK Int32
-
(input) INTEGER
The dimension of the array WORK. LWORK .GE. 3*N+1.
For optimal performance LWORK .GE. 2*N+( N+1 )*NB, where NB
is the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
- INFO Int32
-
(output) INTEGER
= 0: successful exit.
.LT. 0: if INFO = -i, the i-th argument had an illegal value.
See Also