Click or drag to resize

DGEQPFRun Method

Purpose ======= This routine is deprecated and has been replaced by routine DGEQP3. DGEQPF computes a QR factorization with column pivoting of a real M-by-N matrix A: A*P = Q*R.

Namespace: DotNumerics.LinearAlgebra.CSLapack
Assembly: DWSIM.MathOps.DotNumerics (in DWSIM.MathOps.DotNumerics.dll) Version: 1.0.0.0 (1.0.0.0)
Syntax
public void Run(
	int M,
	int N,
	ref double[] A,
	int offset_a,
	int LDA,
	ref int[] JPVT,
	int offset_jpvt,
	ref double[] TAU,
	int offset_tau,
	ref double[] WORK,
	int offset_work,
	ref int INFO
)
Request Example View Source

Parameters

M  Int32
(input) INTEGER The number of rows of the matrix A. M .GE. 0.
N  Int32
(input) INTEGER The number of columns of the matrix A. N .GE. 0
A  Double
(input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, the upper triangle of the array contains the min(M,N)-by-N upper triangular matrix R; the elements below the diagonal, together with the array TAU, represent the orthogonal matrix Q as a product of min(m,n) elementary reflectors.
offset_a  Int32
 
LDA  Int32
(input) INTEGER The leading dimension of the array A. LDA .GE. max(1,M).
JPVT  Int32
(input/output) INTEGER array, dimension (N) On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted to the front of A*P (a leading column); if JPVT(i) = 0, the i-th column of A is a free column. On exit, if JPVT(i) = k, then the i-th column of A*P was the k-th column of A.
offset_jpvt  Int32
 
TAU  Double
(output) DOUBLE PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors.
offset_tau  Int32
 
WORK  Double
(workspace) DOUBLE PRECISION array, dimension (3*N)
offset_work  Int32
 
INFO  Int32
(output) INTEGER = 0: successful exit .LT. 0: if INFO = -i, the i-th argument had an illegal value
See Also