Click or drag to resize

DGESDDRun Method

Purpose ======= DGESDD computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and right singular vectors. If singular vectors are desired, it uses a divide-and-conquer algorithm. The SVD is written A = U * SIGMA * transpose(V) where SIGMA is an M-by-N matrix which is zero except for its min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA are the singular values of A; they are real and non-negative, and are returned in descending order. The first min(m,n) columns of U and V are the left and right singular vectors of A. Note that the routine returns VT = V**T, not V. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.

Namespace: DotNumerics.LinearAlgebra.CSLapack
Assembly: DWSIM.MathOps.DotNumerics (in DWSIM.MathOps.DotNumerics.dll) Version: 1.0.0.0 (1.0.0.0)
Syntax
public void Run(
	string JOBZ,
	int M,
	int N,
	ref double[] A,
	int offset_a,
	int LDA,
	ref double[] S,
	int offset_s,
	ref double[] U,
	int offset_u,
	int LDU,
	ref double[] VT,
	int offset_vt,
	int LDVT,
	ref double[] WORK,
	int offset_work,
	int LWORK,
	ref int[] IWORK,
	int offset_iwork,
	ref int INFO
)
Request Example View Source

Parameters

JOBZ  String
(input) CHARACTER*1 Specifies options for computing all or part of the matrix U: = 'A': all M columns of U and all N rows of V**T are returned in the arrays U and VT; = 'S': the first min(M,N) columns of U and the first min(M,N) rows of V**T are returned in the arrays U and VT; = 'O': If M .GE. N, the first N columns of U are overwritten on the array A and all rows of V**T are returned in the array VT; otherwise, all columns of U are returned in the array U and the first M rows of V**T are overwritten in the array A; = 'N': no columns of U or rows of V**T are computed.
M  Int32
(input) INTEGER The number of rows of the input matrix A. M .GE. 0.
N  Int32
(input) INTEGER The number of columns of the input matrix A. N .GE. 0.
A  Double
= U * SIGMA * transpose(V)
offset_a  Int32
 
LDA  Int32
(input) INTEGER The leading dimension of the array A. LDA .GE. max(1,M).
S  Double
(output) DOUBLE PRECISION array, dimension (min(M,N)) The singular values of A, sorted so that S(i) .GE. S(i+1).
offset_s  Int32
 
U  Double
(output) DOUBLE PRECISION array, dimension (LDU,UCOL) UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M .LT. N; UCOL = min(M,N) if JOBZ = 'S'. If JOBZ = 'A' or JOBZ = 'O' and M .LT. N, U contains the M-by-M orthogonal matrix U; if JOBZ = 'S', U contains the first min(M,N) columns of U (the left singular vectors, stored columnwise); if JOBZ = 'O' and M .GE. N, or JOBZ = 'N', U is not referenced.
offset_u  Int32
 
LDU  Int32
(input) INTEGER The leading dimension of the array U. LDU .GE. 1; if JOBZ = 'S' or 'A' or JOBZ = 'O' and M .LT. N, LDU .GE. M.
VT  Double
(output) DOUBLE PRECISION array, dimension (LDVT,N) If JOBZ = 'A' or JOBZ = 'O' and M .GE. N, VT contains the N-by-N orthogonal matrix V**T; if JOBZ = 'S', VT contains the first min(M,N) rows of V**T (the right singular vectors, stored rowwise); if JOBZ = 'O' and M .LT. N, or JOBZ = 'N', VT is not referenced.
offset_vt  Int32
 
LDVT  Int32
(input) INTEGER The leading dimension of the array VT. LDVT .GE. 1; if JOBZ = 'A' or JOBZ = 'O' and M .GE. N, LDVT .GE. N; if JOBZ = 'S', LDVT .GE. min(M,N).
WORK  Double
(workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK;
offset_work  Int32
 
LWORK  Int32
(input) INTEGER The dimension of the array WORK. LWORK .GE. 1. If JOBZ = 'N', LWORK .GE. 3*min(M,N) + max(max(M,N),7*min(M,N)). If JOBZ = 'O', LWORK .GE. 3*min(M,N)*min(M,N) + max(max(M,N),5*min(M,N)*min(M,N)+4*min(M,N)). If JOBZ = 'S' or 'A' LWORK .GE. 3*min(M,N)*min(M,N) + max(max(M,N),4*min(M,N)*min(M,N)+4*min(M,N)). For good performance, LWORK should generally be larger. If LWORK = -1 but other input arguments are legal, WORK(1) returns the optimal LWORK.
IWORK  Int32
(workspace) INTEGER array, dimension (8*min(M,N))
offset_iwork  Int32
 
INFO  Int32
(output) INTEGER = 0: successful exit. .LT. 0: if INFO = -i, the i-th argument had an illegal value. .GT. 0: DBDSDC did not converge, updating process failed.
See Also