Purpose
=======
DGGSVD computes the generalized singular value decomposition (GSVD)
of an M-by-N real matrix A and P-by-N real matrix B:
U'*A*Q = D1*( 0 R ), V'*B*Q = D2*( 0 R )
where U, V and Q are orthogonal matrices, and Z' is the transpose
of Z. Let K+L = the effective numerical rank of the matrix (A',B')',
then R is a K+L-by-K+L nonsingular upper triangular matrix, D1 and
D2 are M-by-(K+L) and P-by-(K+L) "diagonal" matrices and of the
following structures, respectively:
If M-K-L .GE. 0,
K L
D1 = K ( I 0 )
L ( 0 C )
M-K-L ( 0 0 )
K L
D2 = L ( 0 S )
P-L ( 0 0 )
N-K-L K L
( 0 R ) = K ( 0 R11 R12 )
L ( 0 0 R22 )
where
C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
S = diag( BETA(K+1), ... , BETA(K+L) ),
C**2 + S**2 = I.
R is stored in A(1:K+L,N-K-L+1:N) on exit.
If M-K-L .LT. 0,
K M-K K+L-M
D1 = K ( I 0 0 )
M-K ( 0 C 0 )
K M-K K+L-M
D2 = M-K ( 0 S 0 )
K+L-M ( 0 0 I )
P-L ( 0 0 0 )
N-K-L K M-K K+L-M
( 0 R ) = K ( 0 R11 R12 R13 )
M-K ( 0 0 R22 R23 )
K+L-M ( 0 0 0 R33 )
where
C = diag( ALPHA(K+1), ... , ALPHA(M) ),
S = diag( BETA(K+1), ... , BETA(M) ),
C**2 + S**2 = I.
(R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
( 0 R22 R23 )
in B(M-K+1:L,N+M-K-L+1:N) on exit.
The routine computes C, S, R, and optionally the orthogonal
transformation matrices U, V and Q.
In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
A and B implicitly gives the SVD of A*inv(B):
A*inv(B) = U*(D1*inv(D2))*V'.
If ( A',B')' has orthonormal columns, then the GSVD of A and B is
also equal to the CS decomposition of A and B. Furthermore, the GSVD
can be used to derive the solution of the eigenvalue problem:
A'*A x = lambda* B'*B x.
In some literature, the GSVD of A and B is presented in the form
U'*A*X = ( 0 D1 ), V'*B*X = ( 0 D2 )
where U and V are orthogonal and X is nonsingular, D1 and D2 are
``diagonal''. The former GSVD form can be converted to the latter
form by taking the nonsingular matrix X as
X = Q*( I 0 )
( 0 inv(R) ).
Namespace: DotNumerics.LinearAlgebra.CSLapackAssembly: DWSIM.MathOps.DotNumerics (in DWSIM.MathOps.DotNumerics.dll) Version: 1.0.0.0 (1.0.0.0)
Syntax public void Run(
string JOBU,
string JOBV,
string JOBQ,
int M,
int N,
int P,
ref int K,
ref int L,
ref double[] A,
int offset_a,
int LDA,
ref double[] B,
int offset_b,
int LDB,
ref double[] ALPHA,
int offset_alpha,
ref double[] BETA,
int offset_beta,
ref double[] U,
int offset_u,
int LDU,
ref double[] V,
int offset_v,
int LDV,
ref double[] Q,
int offset_q,
int LDQ,
ref double[] WORK,
int offset_work,
ref int[] IWORK,
int offset_iwork,
ref int INFO
)
Public Sub Run (
JOBU As String,
JOBV As String,
JOBQ As String,
M As Integer,
N As Integer,
P As Integer,
ByRef K As Integer,
ByRef L As Integer,
ByRef A As Double(),
offset_a As Integer,
LDA As Integer,
ByRef B As Double(),
offset_b As Integer,
LDB As Integer,
ByRef ALPHA As Double(),
offset_alpha As Integer,
ByRef BETA As Double(),
offset_beta As Integer,
ByRef U As Double(),
offset_u As Integer,
LDU As Integer,
ByRef V As Double(),
offset_v As Integer,
LDV As Integer,
ByRef Q As Double(),
offset_q As Integer,
LDQ As Integer,
ByRef WORK As Double(),
offset_work As Integer,
ByRef IWORK As Integer(),
offset_iwork As Integer,
ByRef INFO As Integer
)
Request Example
View SourceParameters
- JOBU String
-
(input) CHARACTER*1
= 'U': Orthogonal matrix U is computed;
= 'N': U is not computed.
- JOBV String
-
(input) CHARACTER*1
= 'V': Orthogonal matrix V is computed;
= 'N': V is not computed.
- JOBQ String
-
(input) CHARACTER*1
= 'Q': Orthogonal matrix Q is computed;
= 'N': Q is not computed.
- M Int32
-
(input) INTEGER
The number of rows of the matrix A. M .GE. 0.
- N Int32
-
(input) INTEGER
The number of columns of the matrices A and B. N .GE. 0.
- P Int32
-
(input) INTEGER
The number of rows of the matrix B. P .GE. 0.
- K Int32
-
L
- L Int32
-
( 0 C )
- A Double
-
(input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A contains the triangular matrix R, or part of R.
See Purpose for details.
- offset_a Int32
-
- LDA Int32
-
(input) INTEGER
The leading dimension of the array A. LDA .GE. max(1,M).
- B Double
-
(input/output) DOUBLE PRECISION array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, B contains the triangular matrix R if M-K-L .LT. 0.
See Purpose for details.
- offset_b Int32
-
- LDB Int32
-
(input) INTEGER
The leading dimension of the array B. LDB .GE. max(1,P).
- ALPHA Double
-
(output) DOUBLE PRECISION array, dimension (N)
- offset_alpha Int32
-
- BETA Double
-
(output) DOUBLE PRECISION array, dimension (N)
On exit, ALPHA and BETA contain the generalized singular
value pairs of A and B;
ALPHA(1:K) = 1,
BETA(1:K) = 0,
and if M-K-L .GE. 0,
ALPHA(K+1:K+L) = C,
BETA(K+1:K+L) = S,
or if M-K-L .LT. 0,
ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
BETA(K+1:M) =S, BETA(M+1:K+L) =1
and
ALPHA(K+L+1:N) = 0
BETA(K+L+1:N) = 0
- offset_beta Int32
-
- U Double
-
(output) DOUBLE PRECISION array, dimension (LDU,M)
If JOBU = 'U', U contains the M-by-M orthogonal matrix U.
If JOBU = 'N', U is not referenced.
- offset_u Int32
-
- LDU Int32
-
(input) INTEGER
The leading dimension of the array U. LDU .GE. max(1,M) if
JOBU = 'U'; LDU .GE. 1 otherwise.
- V Double
-
(output) DOUBLE PRECISION array, dimension (LDV,P)
If JOBV = 'V', V contains the P-by-P orthogonal matrix V.
If JOBV = 'N', V is not referenced.
- offset_v Int32
-
- LDV Int32
-
(input) INTEGER
The leading dimension of the array V. LDV .GE. max(1,P) if
JOBV = 'V'; LDV .GE. 1 otherwise.
- Q Double
-
(output) DOUBLE PRECISION array, dimension (LDQ,N)
If JOBQ = 'Q', Q contains the N-by-N orthogonal matrix Q.
If JOBQ = 'N', Q is not referenced.
- offset_q Int32
-
- LDQ Int32
-
(input) INTEGER
The leading dimension of the array Q. LDQ .GE. max(1,N) if
JOBQ = 'Q'; LDQ .GE. 1 otherwise.
- WORK Double
-
(workspace) DOUBLE PRECISION array,
dimension (max(3*N,M,P)+N)
- offset_work Int32
-
- IWORK Int32
-
(workspace/output) INTEGER array, dimension (N)
On exit, IWORK stores the sorting information. More
precisely, the following loop will sort ALPHA
for I = K+1, min(M,K+L)
swap ALPHA(I) and ALPHA(IWORK(I))
endfor
such that ALPHA(1) .GE. ALPHA(2) .GE. ... .GE. ALPHA(N).
- offset_iwork Int32
-
- INFO Int32
-
(output) INTEGER
= 0: successful exit
.LT. 0: if INFO = -i, the i-th argument had an illegal value.
.GT. 0: if INFO = 1, the Jacobi-type procedure failed to
converge. For further details, see subroutine DTGSJA.
See Also