Click or drag to resize

DGTSVRun Method

Purpose ======= DGTSV solves the equation A*X = B, where A is an n by n tridiagonal matrix, by Gaussian elimination with partial pivoting. Note that the equation A'*X = B may be solved by interchanging the order of the arguments DU and DL.

Namespace: DotNumerics.LinearAlgebra.CSLapack
Assembly: DWSIM.MathOps.DotNumerics (in DWSIM.MathOps.DotNumerics.dll) Version: 1.0.0.0 (1.0.0.0)
Syntax
public void Run(
	int N,
	int NRHS,
	ref double[] DL,
	int offset_dl,
	ref double[] D,
	int offset_d,
	ref double[] DU,
	int offset_du,
	ref double[] B,
	int offset_b,
	int LDB,
	ref int INFO
)
Request Example View Source

Parameters

N  Int32
(input) INTEGER The order of the matrix A. N .GE. 0.
NRHS  Int32
(input) INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS .GE. 0.
DL  Double
(input/output) DOUBLE PRECISION array, dimension (N-1) On entry, DL must contain the (n-1) sub-diagonal elements of A. On exit, DL is overwritten by the (n-2) elements of the second super-diagonal of the upper triangular matrix U from the LU factorization of A, in DL(1), ..., DL(n-2).
offset_dl  Int32
 
D  Double
(input/output) DOUBLE PRECISION array, dimension (N) On entry, D must contain the diagonal elements of A. On exit, D is overwritten by the n diagonal elements of U.
offset_d  Int32
 
DU  Double
(input/output) DOUBLE PRECISION array, dimension (N-1) On entry, DU must contain the (n-1) super-diagonal elements of A. On exit, DU is overwritten by the (n-1) elements of the first super-diagonal of U.
offset_du  Int32
 
B  Double
(input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) On entry, the N by NRHS matrix of right hand side matrix B. On exit, if INFO = 0, the N by NRHS solution matrix X.
offset_b  Int32
 
LDB  Int32
(input) INTEGER The leading dimension of the array B. LDB .GE. max(1,N).
INFO  Int32
(output) INTEGER = 0: successful exit .LT. 0: if INFO = -i, the i-th argument had an illegal value .GT. 0: if INFO = i, U(i,i) is exactly zero, and the solution has not been computed. The factorization has not been completed unless i = N.
See Also