Click or drag to resize

DLAED0Run Method

Purpose ======= DLAED0 computes all eigenvalues and corresponding eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method.

Namespace: DotNumerics.LinearAlgebra.CSLapack
Assembly: DWSIM.MathOps.DotNumerics (in DWSIM.MathOps.DotNumerics.dll) Version: 1.0.0.0 (1.0.0.0)
Syntax
public void Run(
	int ICOMPQ,
	int QSIZ,
	int N,
	ref double[] D,
	int offset_d,
	ref double[] E,
	int offset_e,
	ref double[] Q,
	int offset_q,
	int LDQ,
	ref double[] QSTORE,
	int offset_qstore,
	int LDQS,
	ref double[] WORK,
	int offset_work,
	ref int[] IWORK,
	int offset_iwork,
	ref int INFO
)
Request Example View Source

Parameters

ICOMPQ  Int32
(input) INTEGER = 0: Compute eigenvalues only. = 1: Compute eigenvectors of original dense symmetric matrix also. On entry, Q contains the orthogonal matrix used to reduce the original matrix to tridiagonal form. = 2: Compute eigenvalues and eigenvectors of tridiagonal matrix.
QSIZ  Int32
(input) INTEGER The dimension of the orthogonal matrix used to reduce the full matrix to tridiagonal form. QSIZ .GE. N if ICOMPQ = 1.
N  Int32
(input) INTEGER The dimension of the symmetric tridiagonal matrix. N .GE. 0.
D  Double
(input/output) DOUBLE PRECISION array, dimension (N) On entry, the main diagonal of the tridiagonal matrix. On exit, its eigenvalues.
offset_d  Int32
 
E  Double
(input) DOUBLE PRECISION array, dimension (N-1) The off-diagonal elements of the tridiagonal matrix. On exit, E has been destroyed.
offset_e  Int32
 
Q  Double
(input/output) DOUBLE PRECISION array, dimension (LDQ, N) On entry, Q must contain an N-by-N orthogonal matrix. If ICOMPQ = 0 Q is not referenced. If ICOMPQ = 1 On entry, Q is a subset of the columns of the orthogonal matrix used to reduce the full matrix to tridiagonal form corresponding to the subset of the full matrix which is being decomposed at this time. If ICOMPQ = 2 On entry, Q will be the identity matrix. On exit, Q contains the eigenvectors of the tridiagonal matrix.
offset_q  Int32
 
LDQ  Int32
(input) INTEGER The leading dimension of the array Q. If eigenvectors are desired, then LDQ .GE. max(1,N). In any case, LDQ .GE. 1.
QSTORE  Double
(workspace) DOUBLE PRECISION array, dimension (LDQS, N) Referenced only when ICOMPQ = 1. Used to store parts of the eigenvector matrix when the updating matrix multiplies take place.
offset_qstore  Int32
 
LDQS  Int32
(input) INTEGER The leading dimension of the array QSTORE. If ICOMPQ = 1, then LDQS .GE. max(1,N). In any case, LDQS .GE. 1.
WORK  Double
(workspace) DOUBLE PRECISION array, If ICOMPQ = 0 or 1, the dimension of WORK must be at least 1 + 3*N + 2*N*lg N + 2*N**2 ( lg( N ) = smallest integer k such that 2^k .GE. N ) If ICOMPQ = 2, the dimension of WORK must be at least 4*N + N**2.
offset_work  Int32
 
IWORK  Int32
(workspace) INTEGER array, If ICOMPQ = 0 or 1, the dimension of IWORK must be at least 6 + 6*N + 5*N*lg N. ( lg( N ) = smallest integer k such that 2^k .GE. N ) If ICOMPQ = 2, the dimension of IWORK must be at least 3 + 5*N.
offset_iwork  Int32
 
INFO  Int32
(output) INTEGER = 0: successful exit. .LT. 0: if INFO = -i, the i-th argument had an illegal value. .GT. 0: The algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1).
See Also