Purpose
=======
DLAED9 finds the roots of the secular equation, as defined by the
values in D, Z, and RHO, between KSTART and KSTOP. It makes the
appropriate calls to DLAED4 and then stores the new matrix of
eigenvectors for use in calculating the next level of Z vectors.
Namespace: DotNumerics.LinearAlgebra.CSLapackAssembly: DWSIM.MathOps.DotNumerics (in DWSIM.MathOps.DotNumerics.dll) Version: 1.0.0.0 (1.0.0.0)
Syntax public void Run(
int K,
int KSTART,
int KSTOP,
int N,
ref double[] D,
int offset_d,
ref double[] Q,
int offset_q,
int LDQ,
double RHO,
ref double[] DLAMDA,
int offset_dlamda,
ref double[] W,
int offset_w,
ref double[] S,
int offset_s,
int LDS,
ref int INFO
)
Public Sub Run (
K As Integer,
KSTART As Integer,
KSTOP As Integer,
N As Integer,
ByRef D As Double(),
offset_d As Integer,
ByRef Q As Double(),
offset_q As Integer,
LDQ As Integer,
RHO As Double,
ByRef DLAMDA As Double(),
offset_dlamda As Integer,
ByRef W As Double(),
offset_w As Integer,
ByRef S As Double(),
offset_s As Integer,
LDS As Integer,
ByRef INFO As Integer
)
Request Example
View SourceParameters
- K Int32
-
(input) INTEGER
The number of terms in the rational function to be solved by
DLAED4. K .GE. 0.
- KSTART Int32
-
(input) INTEGER
- KSTOP Int32
-
(input) INTEGER
The updated eigenvalues Lambda(I), KSTART .LE. I .LE. KSTOP
are to be computed. 1 .LE. KSTART .LE. KSTOP .LE. K.
- N Int32
-
(input) INTEGER
The number of rows and columns in the Q matrix.
N .GE. K (delation may result in N .GT. K).
- D Double
-
(output) DOUBLE PRECISION array, dimension (N)
D(I) contains the updated eigenvalues
for KSTART .LE. I .LE. KSTOP.
- offset_d Int32
-
- Q Double
-
(workspace) DOUBLE PRECISION array, dimension (LDQ,N)
- offset_q Int32
-
- LDQ Int32
-
(input) INTEGER
The leading dimension of the array Q. LDQ .GE. max( 1, N ).
- RHO Double
-
(input) DOUBLE PRECISION
The value of the parameter in the rank one update equation.
RHO .GE. 0 required.
- DLAMDA Double
-
(input) DOUBLE PRECISION array, dimension (K)
The first K elements of this array contain the old roots
of the deflated updating problem. These are the poles
of the secular equation.
- offset_dlamda Int32
-
- W Double
-
(input) DOUBLE PRECISION array, dimension (K)
The first K elements of this array contain the components
of the deflation-adjusted updating vector.
- offset_w Int32
-
- S Double
-
(output) DOUBLE PRECISION array, dimension (LDS, K)
Will contain the eigenvectors of the repaired matrix which
will be stored for subsequent Z vector calculation and
multiplied by the previously accumulated eigenvectors
to update the system.
- offset_s Int32
-
- LDS Int32
-
(input) INTEGER
The leading dimension of S. LDS .GE. max( 1, K ).
- INFO Int32
-
(output) INTEGER
= 0: successful exit.
.LT. 0: if INFO = -i, the i-th argument had an illegal value.
.GT. 0: if INFO = 1, an eigenvalue did not converge
See Also