Click or drag to resize

DLAED9Run Method

Purpose ======= DLAED9 finds the roots of the secular equation, as defined by the values in D, Z, and RHO, between KSTART and KSTOP. It makes the appropriate calls to DLAED4 and then stores the new matrix of eigenvectors for use in calculating the next level of Z vectors.

Namespace: DotNumerics.LinearAlgebra.CSLapack
Assembly: DWSIM.MathOps.DotNumerics (in DWSIM.MathOps.DotNumerics.dll) Version: 1.0.0.0 (1.0.0.0)
Syntax
public void Run(
	int K,
	int KSTART,
	int KSTOP,
	int N,
	ref double[] D,
	int offset_d,
	ref double[] Q,
	int offset_q,
	int LDQ,
	double RHO,
	ref double[] DLAMDA,
	int offset_dlamda,
	ref double[] W,
	int offset_w,
	ref double[] S,
	int offset_s,
	int LDS,
	ref int INFO
)
Request Example View Source

Parameters

K  Int32
(input) INTEGER The number of terms in the rational function to be solved by DLAED4. K .GE. 0.
KSTART  Int32
(input) INTEGER
KSTOP  Int32
(input) INTEGER The updated eigenvalues Lambda(I), KSTART .LE. I .LE. KSTOP are to be computed. 1 .LE. KSTART .LE. KSTOP .LE. K.
N  Int32
(input) INTEGER The number of rows and columns in the Q matrix. N .GE. K (delation may result in N .GT. K).
D  Double
(output) DOUBLE PRECISION array, dimension (N) D(I) contains the updated eigenvalues for KSTART .LE. I .LE. KSTOP.
offset_d  Int32
 
Q  Double
(workspace) DOUBLE PRECISION array, dimension (LDQ,N)
offset_q  Int32
 
LDQ  Int32
(input) INTEGER The leading dimension of the array Q. LDQ .GE. max( 1, N ).
RHO  Double
(input) DOUBLE PRECISION The value of the parameter in the rank one update equation. RHO .GE. 0 required.
DLAMDA  Double
(input) DOUBLE PRECISION array, dimension (K) The first K elements of this array contain the old roots of the deflated updating problem. These are the poles of the secular equation.
offset_dlamda  Int32
 
W  Double
(input) DOUBLE PRECISION array, dimension (K) The first K elements of this array contain the components of the deflation-adjusted updating vector.
offset_w  Int32
 
S  Double
(output) DOUBLE PRECISION array, dimension (LDS, K) Will contain the eigenvectors of the repaired matrix which will be stored for subsequent Z vector calculation and multiplied by the previously accumulated eigenvectors to update the system.
offset_s  Int32
 
LDS  Int32
(input) INTEGER The leading dimension of S. LDS .GE. max( 1, K ).
INFO  Int32
(output) INTEGER = 0: successful exit. .LT. 0: if INFO = -i, the i-th argument had an illegal value. .GT. 0: if INFO = 1, an eigenvalue did not converge
See Also