Click or drag to resize

DLASD8Run Method

Purpose ======= DLASD8 finds the square roots of the roots of the secular equation, as defined by the values in DSIGMA and Z. It makes the appropriate calls to DLASD4, and stores, for each element in D, the distance to its two nearest poles (elements in DSIGMA). It also updates the arrays VF and VL, the first and last components of all the right singular vectors of the original bidiagonal matrix. DLASD8 is called from DLASD6.

Namespace: DotNumerics.LinearAlgebra.CSLapack
Assembly: DWSIM.MathOps.DotNumerics (in DWSIM.MathOps.DotNumerics.dll) Version: 1.0.0.0 (1.0.0.0)
Syntax
public void Run(
	int ICOMPQ,
	int K,
	ref double[] D,
	int offset_d,
	ref double[] Z,
	int offset_z,
	ref double[] VF,
	int offset_vf,
	ref double[] VL,
	int offset_vl,
	ref double[] DIFL,
	int offset_difl,
	ref double[] DIFR,
	int offset_difr,
	int LDDIFR,
	ref double[] DSIGMA,
	int offset_dsigma,
	ref double[] WORK,
	int offset_work,
	ref int INFO
)
Request Example View Source

Parameters

ICOMPQ  Int32
(input) INTEGER Specifies whether singular vectors are to be computed in factored form in the calling routine: = 0: Compute singular values only. = 1: Compute singular vectors in factored form as well.
K  Int32
(input) INTEGER The number of terms in the rational function to be solved by DLASD4. K .GE. 1.
D  Double
(output) DOUBLE PRECISION array, dimension ( K ) On output, D contains the updated singular values.
offset_d  Int32
 
Z  Double
(input) DOUBLE PRECISION array, dimension ( K ) The first K elements of this array contain the components of the deflation-adjusted updating row vector.
offset_z  Int32
 
VF  Double
(input/output) DOUBLE PRECISION array, dimension ( K ) On entry, VF contains information passed through DBEDE8. On exit, VF contains the first K components of the first components of all right singular vectors of the bidiagonal matrix.
offset_vf  Int32
 
VL  Double
(input/output) DOUBLE PRECISION array, dimension ( K ) On entry, VL contains information passed through DBEDE8. On exit, VL contains the first K components of the last components of all right singular vectors of the bidiagonal matrix.
offset_vl  Int32
 
DIFL  Double
(output) DOUBLE PRECISION array, dimension ( K ) On exit, DIFL(I) = D(I) - DSIGMA(I).
offset_difl  Int32
 
DIFR  Double
(output) DOUBLE PRECISION array, dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and dimension ( K ) if ICOMPQ = 0. On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not defined and will not be referenced. If ICOMPQ = 1, DIFR(1:K,2) is an array containing the normalizing factors for the right singular vector matrix.
offset_difr  Int32
 
LDDIFR  Int32
(input) INTEGER The leading dimension of DIFR, must be at least K.
DSIGMA  Double
(input) DOUBLE PRECISION array, dimension ( K ) The first K elements of this array contain the old roots of the deflated updating problem. These are the poles of the secular equation.
offset_dsigma  Int32
 
WORK  Double
(workspace) DOUBLE PRECISION array, dimension at least 3 * K
offset_work  Int32
 
INFO  Int32
(output) INTEGER = 0: successful exit. .LT. 0: if INFO = -i, the i-th argument had an illegal value. .GT. 0: if INFO = 1, an singular value did not converge
See Also