Purpose
=======
Using a divide and conquer approach, DLASDA computes the singular
value decomposition (SVD) of a real upper bidiagonal N-by-M matrix
B with diagonal D and offdiagonal E, where M = N + SQRE. The
algorithm computes the singular values in the SVD B = U * S * VT.
The orthogonal matrices U and VT are optionally computed in
compact form.
A related subroutine, DLASD0, computes the singular values and
the singular vectors in explicit form.
Namespace: DotNumerics.LinearAlgebra.CSLapackAssembly: DWSIM.MathOps.DotNumerics (in DWSIM.MathOps.DotNumerics.dll) Version: 1.0.0.0 (1.0.0.0)
Syntax public void Run(
int ICOMPQ,
int SMLSIZ,
int N,
int SQRE,
ref double[] D,
int offset_d,
ref double[] E,
int offset_e,
ref double[] U,
int offset_u,
int LDU,
ref double[] VT,
int offset_vt,
ref int[] K,
int offset_k,
ref double[] DIFL,
int offset_difl,
ref double[] DIFR,
int offset_difr,
ref double[] Z,
int offset_z,
ref double[] POLES,
int offset_poles,
ref int[] GIVPTR,
int offset_givptr,
ref int[] GIVCOL,
int offset_givcol,
int LDGCOL,
ref int[] PERM,
int offset_perm,
ref double[] GIVNUM,
int offset_givnum,
ref double[] C,
int offset_c,
ref double[] S,
int offset_s,
ref double[] WORK,
int offset_work,
ref int[] IWORK,
int offset_iwork,
ref int INFO
)
Public Sub Run (
ICOMPQ As Integer,
SMLSIZ As Integer,
N As Integer,
SQRE As Integer,
ByRef D As Double(),
offset_d As Integer,
ByRef E As Double(),
offset_e As Integer,
ByRef U As Double(),
offset_u As Integer,
LDU As Integer,
ByRef VT As Double(),
offset_vt As Integer,
ByRef K As Integer(),
offset_k As Integer,
ByRef DIFL As Double(),
offset_difl As Integer,
ByRef DIFR As Double(),
offset_difr As Integer,
ByRef Z As Double(),
offset_z As Integer,
ByRef POLES As Double(),
offset_poles As Integer,
ByRef GIVPTR As Integer(),
offset_givptr As Integer,
ByRef GIVCOL As Integer(),
offset_givcol As Integer,
LDGCOL As Integer,
ByRef PERM As Integer(),
offset_perm As Integer,
ByRef GIVNUM As Double(),
offset_givnum As Integer,
ByRef C As Double(),
offset_c As Integer,
ByRef S As Double(),
offset_s As Integer,
ByRef WORK As Double(),
offset_work As Integer,
ByRef IWORK As Integer(),
offset_iwork As Integer,
ByRef INFO As Integer
)
Request Example
View SourceParameters
- ICOMPQ Int32
-
(input) INTEGER
Specifies whether singular vectors are to be computed
in compact form, as follows
= 0: Compute singular values only.
= 1: Compute singular vectors of upper bidiagonal
matrix in compact form.
- SMLSIZ Int32
-
(input) INTEGER
The maximum size of the subproblems at the bottom of the
computation tree.
- N Int32
-
(input) INTEGER
The row dimension of the upper bidiagonal matrix. This is
also the dimension of the main diagonal array D.
- SQRE Int32
-
(input) INTEGER
Specifies the column dimension of the bidiagonal matrix.
= 0: The bidiagonal matrix has column dimension M = N;
= 1: The bidiagonal matrix has column dimension M = N + 1.
- D Double
-
(input/output) DOUBLE PRECISION array, dimension ( N )
On entry D contains the main diagonal of the bidiagonal
matrix. On exit D, if INFO = 0, contains its singular values.
- offset_d Int32
-
- E Double
-
(input) DOUBLE PRECISION array, dimension ( M-1 )
Contains the subdiagonal entries of the bidiagonal matrix.
On exit, E has been destroyed.
- offset_e Int32
-
- U Double
-
(output) DOUBLE PRECISION array,
dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced
if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left
singular vector matrices of all subproblems at the bottom
level.
- offset_u Int32
-
- LDU Int32
-
(input) INTEGER, LDU = .GT. N.
The leading dimension of arrays U, VT, DIFL, DIFR, POLES,
GIVNUM, and Z.
- VT Double
-
(output) DOUBLE PRECISION array,
dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced
if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT' contains the right
singular vector matrices of all subproblems at the bottom
level.
- offset_vt Int32
-
- K Int32
-
(output) INTEGER array,
dimension ( N ) if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0.
If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th
secular equation on the computation tree.
- offset_k Int32
-
- DIFL Double
-
(output) DOUBLE PRECISION array, dimension ( LDU, NLVL ),
where NLVL = floor(log_2 (N/SMLSIZ))).
- offset_difl Int32
-
- DIFR Double
-
(output) DOUBLE PRECISION array,
dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and
dimension ( N ) if ICOMPQ = 0.
If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1)
record distances between singular values on the I-th
level and singular values on the (I -1)-th level, and
DIFR(1:N, 2 * I ) contains the normalizing factors for
the right singular vector matrix. See DLASD8 for details.
- offset_difr Int32
-
- Z Double
-
(output) DOUBLE PRECISION array,
dimension ( LDU, NLVL ) if ICOMPQ = 1 and
dimension ( N ) if ICOMPQ = 0.
The first K elements of Z(1, I) contain the components of
the deflation-adjusted updating row vector for subproblems
on the I-th level.
- offset_z Int32
-
- POLES Double
-
(output) DOUBLE PRECISION array,
dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced
if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and
POLES(1, 2*I) contain the new and old singular values
involved in the secular equations on the I-th level.
- offset_poles Int32
-
- GIVPTR Int32
-
(output) INTEGER array,
dimension ( N ) if ICOMPQ = 1, and not referenced if
ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records
the number of Givens rotations performed on the I-th
problem on the computation tree.
- offset_givptr Int32
-
- GIVCOL Int32
-
(output) INTEGER array,
dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not
referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations
of Givens rotations performed on the I-th level on the
computation tree.
- offset_givcol Int32
-
- LDGCOL Int32
-
(input) INTEGER, LDGCOL = .GT. N.
The leading dimension of arrays GIVCOL and PERM.
- PERM Int32
-
(output) INTEGER array,
dimension ( LDGCOL, NLVL ) if ICOMPQ = 1, and not referenced
if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records
permutations done on the I-th level of the computation tree.
- offset_perm Int32
-
- GIVNUM Double
-
(output) DOUBLE PRECISION array,
dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not
referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S-
values of Givens rotations performed on the I-th level on
the computation tree.
- offset_givnum Int32
-
- C Double
-
(output) DOUBLE PRECISION array,
dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0.
If ICOMPQ = 1 and the I-th subproblem is not square, on exit,
C( I ) contains the C-value of a Givens rotation related to
the right null space of the I-th subproblem.
- offset_c Int32
-
- S Double
-
(output) DOUBLE PRECISION array, dimension ( N ) if
ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1
and the I-th subproblem is not square, on exit, S( I )
contains the S-value of a Givens rotation related to
the right null space of the I-th subproblem.
- offset_s Int32
-
- WORK Double
-
(workspace) DOUBLE PRECISION array, dimension
(6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)).
- offset_work Int32
-
- IWORK Int32
-
(workspace) INTEGER array.
Dimension must be at least (7 * N).
- offset_iwork Int32
-
- INFO Int32
-
(output) INTEGER
= 0: successful exit.
.LT. 0: if INFO = -i, the i-th argument had an illegal value.
.GT. 0: if INFO = 1, an singular value did not converge
See Also