Click or drag to resize

DLASDARun Method

Purpose ======= Using a divide and conquer approach, DLASDA computes the singular value decomposition (SVD) of a real upper bidiagonal N-by-M matrix B with diagonal D and offdiagonal E, where M = N + SQRE. The algorithm computes the singular values in the SVD B = U * S * VT. The orthogonal matrices U and VT are optionally computed in compact form. A related subroutine, DLASD0, computes the singular values and the singular vectors in explicit form.

Namespace: DotNumerics.LinearAlgebra.CSLapack
Assembly: DWSIM.MathOps.DotNumerics (in DWSIM.MathOps.DotNumerics.dll) Version: 1.0.0.0 (1.0.0.0)
Syntax
public void Run(
	int ICOMPQ,
	int SMLSIZ,
	int N,
	int SQRE,
	ref double[] D,
	int offset_d,
	ref double[] E,
	int offset_e,
	ref double[] U,
	int offset_u,
	int LDU,
	ref double[] VT,
	int offset_vt,
	ref int[] K,
	int offset_k,
	ref double[] DIFL,
	int offset_difl,
	ref double[] DIFR,
	int offset_difr,
	ref double[] Z,
	int offset_z,
	ref double[] POLES,
	int offset_poles,
	ref int[] GIVPTR,
	int offset_givptr,
	ref int[] GIVCOL,
	int offset_givcol,
	int LDGCOL,
	ref int[] PERM,
	int offset_perm,
	ref double[] GIVNUM,
	int offset_givnum,
	ref double[] C,
	int offset_c,
	ref double[] S,
	int offset_s,
	ref double[] WORK,
	int offset_work,
	ref int[] IWORK,
	int offset_iwork,
	ref int INFO
)
Request Example View Source

Parameters

ICOMPQ  Int32
(input) INTEGER Specifies whether singular vectors are to be computed in compact form, as follows = 0: Compute singular values only. = 1: Compute singular vectors of upper bidiagonal matrix in compact form.
SMLSIZ  Int32
(input) INTEGER The maximum size of the subproblems at the bottom of the computation tree.
N  Int32
(input) INTEGER The row dimension of the upper bidiagonal matrix. This is also the dimension of the main diagonal array D.
SQRE  Int32
(input) INTEGER Specifies the column dimension of the bidiagonal matrix. = 0: The bidiagonal matrix has column dimension M = N; = 1: The bidiagonal matrix has column dimension M = N + 1.
D  Double
(input/output) DOUBLE PRECISION array, dimension ( N ) On entry D contains the main diagonal of the bidiagonal matrix. On exit D, if INFO = 0, contains its singular values.
offset_d  Int32
 
E  Double
(input) DOUBLE PRECISION array, dimension ( M-1 ) Contains the subdiagonal entries of the bidiagonal matrix. On exit, E has been destroyed.
offset_e  Int32
 
U  Double
(output) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left singular vector matrices of all subproblems at the bottom level.
offset_u  Int32
 
LDU  Int32
(input) INTEGER, LDU = .GT. N. The leading dimension of arrays U, VT, DIFL, DIFR, POLES, GIVNUM, and Z.
VT  Double
(output) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT' contains the right singular vector matrices of all subproblems at the bottom level.
offset_vt  Int32
 
K  Int32
(output) INTEGER array, dimension ( N ) if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th secular equation on the computation tree.
offset_k  Int32
 
DIFL  Double
(output) DOUBLE PRECISION array, dimension ( LDU, NLVL ), where NLVL = floor(log_2 (N/SMLSIZ))).
offset_difl  Int32
 
DIFR  Double
(output) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and dimension ( N ) if ICOMPQ = 0. If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1) record distances between singular values on the I-th level and singular values on the (I -1)-th level, and DIFR(1:N, 2 * I ) contains the normalizing factors for the right singular vector matrix. See DLASD8 for details.
offset_difr  Int32
 
Z  Double
(output) DOUBLE PRECISION array, dimension ( LDU, NLVL ) if ICOMPQ = 1 and dimension ( N ) if ICOMPQ = 0. The first K elements of Z(1, I) contain the components of the deflation-adjusted updating row vector for subproblems on the I-th level.
offset_z  Int32
 
POLES  Double
(output) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and POLES(1, 2*I) contain the new and old singular values involved in the secular equations on the I-th level.
offset_poles  Int32
 
GIVPTR  Int32
(output) INTEGER array, dimension ( N ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records the number of Givens rotations performed on the I-th problem on the computation tree.
offset_givptr  Int32
 
GIVCOL  Int32
(output) INTEGER array, dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations of Givens rotations performed on the I-th level on the computation tree.
offset_givcol  Int32
 
LDGCOL  Int32
(input) INTEGER, LDGCOL = .GT. N. The leading dimension of arrays GIVCOL and PERM.
PERM  Int32
(output) INTEGER array, dimension ( LDGCOL, NLVL ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records permutations done on the I-th level of the computation tree.
offset_perm  Int32
 
GIVNUM  Double
(output) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S- values of Givens rotations performed on the I-th level on the computation tree.
offset_givnum  Int32
 
C  Double
(output) DOUBLE PRECISION array, dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1 and the I-th subproblem is not square, on exit, C( I ) contains the C-value of a Givens rotation related to the right null space of the I-th subproblem.
offset_c  Int32
 
S  Double
(output) DOUBLE PRECISION array, dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1 and the I-th subproblem is not square, on exit, S( I ) contains the S-value of a Givens rotation related to the right null space of the I-th subproblem.
offset_s  Int32
 
WORK  Double
(workspace) DOUBLE PRECISION array, dimension (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)).
offset_work  Int32
 
IWORK  Int32
(workspace) INTEGER array. Dimension must be at least (7 * N).
offset_iwork  Int32
 
INFO  Int32
(output) INTEGER = 0: successful exit. .LT. 0: if INFO = -i, the i-th argument had an illegal value. .GT. 0: if INFO = 1, an singular value did not converge
See Also