Click or drag to resize

DLATRZRun Method

Purpose ======= DLATRZ factors the M-by-(M+L) real upper trapezoidal matrix [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z, by means of orthogonal transformations. Z is an (M+L)-by-(M+L) orthogonal matrix and, R and A1 are M-by-M upper triangular matrices.

Namespace: DotNumerics.LinearAlgebra.CSLapack
Assembly: DWSIM.MathOps.DotNumerics (in DWSIM.MathOps.DotNumerics.dll) Version: 1.0.0.0 (1.0.0.0)
Syntax
public void Run(
	int M,
	int N,
	int L,
	ref double[] A,
	int offset_a,
	int LDA,
	ref double[] TAU,
	int offset_tau,
	ref double[] WORK,
	int offset_work
)
Request Example View Source

Parameters

M  Int32
(input) INTEGER The number of rows of the matrix A. M .GE. 0.
N  Int32
(input) INTEGER The number of columns of the matrix A. N .GE. 0.
L  Int32
(input) INTEGER The number of columns of the matrix A containing the meaningful part of the Householder vectors. N-M .GE. L .GE. 0.
A  Double
(input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the leading M-by-N upper trapezoidal part of the array A must contain the matrix to be factorized. On exit, the leading M-by-M upper triangular part of A contains the upper triangular matrix R, and elements N-L+1 to N of the first M rows of A, with the array TAU, represent the orthogonal matrix Z as a product of M elementary reflectors.
offset_a  Int32
 
LDA  Int32
(input) INTEGER The leading dimension of the array A. LDA .GE. max(1,M).
TAU  Double
(output) DOUBLE PRECISION array, dimension (M) The scalar factors of the elementary reflectors.
offset_tau  Int32
 
WORK  Double
(workspace) DOUBLE PRECISION array, dimension (M)
offset_work  Int32
 
See Also