Click or drag to resize

DSBTRDRun Method

Purpose ======= DSBTRD reduces a real symmetric band matrix A to symmetric tridiagonal form T by an orthogonal similarity transformation: Q**T * A * Q = T.

Namespace: DotNumerics.LinearAlgebra.CSLapack
Assembly: DWSIM.MathOps.DotNumerics (in DWSIM.MathOps.DotNumerics.dll) Version: 1.0.0.0 (1.0.0.0)
Syntax
public void Run(
	string VECT,
	string UPLO,
	int N,
	int KD,
	ref double[] AB,
	int offset_ab,
	int LDAB,
	ref double[] D,
	int offset_d,
	ref double[] E,
	int offset_e,
	ref double[] Q,
	int offset_q,
	int LDQ,
	ref double[] WORK,
	int offset_work,
	ref int INFO
)
Request Example View Source

Parameters

VECT  String
(input) CHARACTER*1 = 'N': do not form Q; = 'V': form Q; = 'U': update a matrix X, by forming X*Q.
UPLO  String
(input) CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.
N  Int32
(input) INTEGER The order of the matrix A. N .GE. 0.
KD  Int32
(input) INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KD .GE. 0.
AB  Double
(input/output) DOUBLE PRECISION array, dimension (LDAB,N) On entry, the upper or lower triangle of the symmetric band matrix A, stored in the first KD+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd).LE.i.LE.j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j.LE.i.LE.min(n,j+kd). On exit, the diagonal elements of AB are overwritten by the diagonal elements of the tridiagonal matrix T; if KD .GT. 0, the elements on the first superdiagonal (if UPLO = 'U') or the first subdiagonal (if UPLO = 'L') are overwritten by the off-diagonal elements of T; the rest of AB is overwritten by values generated during the reduction.
offset_ab  Int32
 
LDAB  Int32
(input) INTEGER The leading dimension of the array AB. LDAB .GE. KD+1.
D  Double
(output) DOUBLE PRECISION array, dimension (N) The diagonal elements of the tridiagonal matrix T.
offset_d  Int32
 
E  Double
(output) DOUBLE PRECISION array, dimension (N-1) The off-diagonal elements of the tridiagonal matrix T: E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.
offset_e  Int32
 
Q  Double
(input/output) DOUBLE PRECISION array, dimension (LDQ,N) On entry, if VECT = 'U', then Q must contain an N-by-N matrix X; if VECT = 'N' or 'V', then Q need not be set. On exit: if VECT = 'V', Q contains the N-by-N orthogonal matrix Q; if VECT = 'U', Q contains the product X*Q; if VECT = 'N', the array Q is not referenced.
offset_q  Int32
 
LDQ  Int32
(input) INTEGER The leading dimension of the array Q. LDQ .GE. 1, and LDQ .GE. N if VECT = 'V' or 'U'.
WORK  Double
(workspace) DOUBLE PRECISION array, dimension (N)
offset_work  Int32
 
INFO  Int32
(output) INTEGER = 0: successful exit .LT. 0: if INFO = -i, the i-th argument had an illegal value
See Also