Click or drag to resize

DTRTRSRun Method

Purpose ======= DTRTRS solves a triangular system of the form A * X = B or A**T * X = B, where A is a triangular matrix of order N, and B is an N-by-NRHS matrix. A check is made to verify that A is nonsingular.

Namespace: DotNumerics.LinearAlgebra.CSLapack
Assembly: DWSIM.MathOps.DotNumerics (in DWSIM.MathOps.DotNumerics.dll) Version: 1.0.0.0 (1.0.0.0)
Syntax
public void Run(
	string UPLO,
	string TRANS,
	string DIAG,
	int N,
	int NRHS,
	double[] A,
	int offset_a,
	int LDA,
	ref double[] B,
	int offset_b,
	int LDB,
	ref int INFO
)
Request Example View Source

Parameters

UPLO  String
(input) CHARACTER*1 = 'U': A is upper triangular; = 'L': A is lower triangular.
TRANS  String
(input) CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose = Transpose)
DIAG  String
(input) CHARACTER*1 = 'N': A is non-unit triangular; = 'U': A is unit triangular.
N  Int32
(input) INTEGER The order of the matrix A. N .GE. 0.
NRHS  Int32
(input) INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS .GE. 0.
A  Double
* X = B or A**T * X = B,
offset_a  Int32
 
LDA  Int32
(input) INTEGER The leading dimension of the array A. LDA .GE. max(1,N).
B  Double
(input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, if INFO = 0, the solution matrix X.
offset_b  Int32
 
LDB  Int32
(input) INTEGER The leading dimension of the array B. LDB .GE. max(1,N).
INFO  Int32
(output) INTEGER = 0: successful exit .LT. 0: if INFO = -i, the i-th argument had an illegal value .GT. 0: if INFO = i, the i-th diagonal element of A is zero, indicating that the matrix is singular and the solutions X have not been computed.
See Also