DLASDQ Methods |
The DLASDQ type exposes the following members.
Name | Description | |
---|---|---|
Run | Purpose ======= DLASDQ computes the singular value decomposition (SVD) of a real (upper or lower) bidiagonal matrix with diagonal D and offdiagonal E, accumulating the transformations if desired. Letting B denote the input bidiagonal matrix, the algorithm computes orthogonal matrices Q and P such that B = Q * S * P' (P' denotes the transpose of P). The singular values S are overwritten on D. The input matrix U is changed to U * Q if desired. The input matrix VT is changed to P' * VT if desired. The input matrix C is changed to Q' * C if desired. See "Computing Small Singular Values of Bidiagonal Matrices With Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan, LAPACK Working Note #3, for a detailed description of the algorithm. |
Name | Description | |
---|---|---|
GetEnumNames | (Defined by General) | |
IsValidDouble | (Defined by General) |