-- LAPACK routine (version 3.1.1) --
Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
January 2007
Purpose
=======
DBDSQR computes the singular values and, optionally, the right and/or
left singular vectors from the singular value decomposition (SVD) of
a real N-by-N (upper or lower) bidiagonal matrix B using the implicit
zero-shift QR algorithm. The SVD of B has the form
B = Q * S * P**T
where S is the diagonal matrix of singular values, Q is an orthogonal
matrix of left singular vectors, and P is an orthogonal matrix of
right singular vectors. If left singular vectors are requested, this
subroutine actually returns U*Q instead of Q, and, if right singular
vectors are requested, this subroutine returns P**T*VT instead of
P**T, for given real input matrices U and VT. When U and VT are the
orthogonal matrices that reduce a general matrix A to bidiagonal
form: A = U*B*VT, as computed by DGEBRD, then
A = (U*Q) * S * (P**T*VT)
is the SVD of A. Optionally, the subroutine may also compute Q**T*C
for a given real input matrix C.
See "Computing Small Singular Values of Bidiagonal Matrices With
Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11,
no. 5, pp. 873-912, Sept 1990) and
"Accurate singular values and differential qd algorithms," by
B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics
Department, University of California at Berkeley, July 1992
for a detailed description of the algorithm.
Inheritance Hierarchy Namespace: DotNumerics.LinearAlgebra.CSLapackAssembly: DWSIM.MathOps.DotNumerics (in DWSIM.MathOps.DotNumerics.dll) Version: 1.0.0.0 (1.0.0.0)
Syntax The DBDSQR type exposes the following members.
Constructors | Name | Description |
---|
| DBDSQR | |
| DBDSQR(LSAME, DLAMCH, DLARTG, DLAS2, DLASQ1, DLASR, DLASV2, DROT, DSCAL, DSWAP, XERBLA) | |
TopMethods | Name | Description |
---|
| Run |
Purpose
=======
DBDSQR computes the singular values and, optionally, the right and/or
left singular vectors from the singular value decomposition (SVD) of
a real N-by-N (upper or lower) bidiagonal matrix B using the implicit
zero-shift QR algorithm. The SVD of B has the form
B = Q * S * P**T
where S is the diagonal matrix of singular values, Q is an orthogonal
matrix of left singular vectors, and P is an orthogonal matrix of
right singular vectors. If left singular vectors are requested, this
subroutine actually returns U*Q instead of Q, and, if right singular
vectors are requested, this subroutine returns P**T*VT instead of
P**T, for given real input matrices U and VT. When U and VT are the
orthogonal matrices that reduce a general matrix A to bidiagonal
form: A = U*B*VT, as computed by DGEBRD, then
A = (U*Q) * S * (P**T*VT)
is the SVD of A. Optionally, the subroutine may also compute Q**T*C
for a given real input matrix C.
See "Computing Small Singular Values of Bidiagonal Matrices With
Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11,
no. 5, pp. 873-912, Sept 1990) and
"Accurate singular values and differential qd algorithms," by
B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics
Department, University of California at Berkeley, July 1992
for a detailed description of the algorithm.
|
TopFields Extension Methods See Also