-- LAPACK driver routine (version 3.1) --
Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
November 2006
Purpose
=======
DGEEV computes for an N-by-N real nonsymmetric matrix A, the
eigenvalues and, optionally, the left and/or right eigenvectors.
The right eigenvector v(j) of A satisfies
A * v(j) = lambda(j) * v(j)
where lambda(j) is its eigenvalue.
The left eigenvector u(j) of A satisfies
u(j)**H * A = lambda(j) * u(j)**H
where u(j)**H denotes the conjugate transpose of u(j).
The computed eigenvectors are normalized to have Euclidean norm
equal to 1 and largest component real.
Inheritance Hierarchy Namespace: DotNumerics.LinearAlgebra.CSLapackAssembly: DWSIM.MathOps.DotNumerics (in DWSIM.MathOps.DotNumerics.dll) Version: 1.0.0.0 (1.0.0.0)
Syntax The DGEEV type exposes the following members.
Constructors | Name | Description |
---|
| DGEEV | |
| DGEEV(DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLABAD, DLACPY, DLARTG, DLASCL, DORGHR, DROT, DSCAL, DTREVC, XERBLA, LSAME, IDAMAX, ILAENV, DLAMCH, DLANGE, DLAPY2, DNRM2) | |
TopMethods | Name | Description |
---|
| Run |
Purpose
=======
DGEEV computes for an N-by-N real nonsymmetric matrix A, the
eigenvalues and, optionally, the left and/or right eigenvectors.
The right eigenvector v(j) of A satisfies
A * v(j) = lambda(j) * v(j)
where lambda(j) is its eigenvalue.
The left eigenvector u(j) of A satisfies
u(j)**H * A = lambda(j) * u(j)**H
where u(j)**H denotes the conjugate transpose of u(j).
The computed eigenvectors are normalized to have Euclidean norm
equal to 1 and largest component real.
|
TopFields Extension Methods See Also