-- LAPACK driver routine (version 3.1) --
Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
November 2006
Purpose
=======
DGGGLM solves a general Gauss-Markov linear model (GLM) problem:
minimize || y ||_2 subject to d = A*x + B*y
x
where A is an N-by-M matrix, B is an N-by-P matrix, and d is a
given N-vector. It is assumed that M .LE. N .LE. M+P, and
rank(A) = M and rank( A B ) = N.
Under these assumptions, the constrained equation is always
consistent, and there is a unique solution x and a minimal 2-norm
solution y, which is obtained using a generalized QR factorization
of the matrices (A, B) given by
A = Q*(R), B = Q*T*Z.
(0)
In particular, if matrix B is square nonsingular, then the problem
GLM is equivalent to the following weighted linear least squares
problem
minimize || inv(B)*(d-A*x) ||_2
x
where inv(B) denotes the inverse of B.
Inheritance Hierarchy Namespace: DotNumerics.LinearAlgebra.CSLapackAssembly: DWSIM.MathOps.DotNumerics (in DWSIM.MathOps.DotNumerics.dll) Version: 1.0.0.0 (1.0.0.0)
Syntax The DGGGLM type exposes the following members.
Constructors Methods | Name | Description |
---|
| Run |
Purpose
=======
DGGGLM solves a general Gauss-Markov linear model (GLM) problem:
minimize || y ||_2 subject to d = A*x + B*y
x
where A is an N-by-M matrix, B is an N-by-P matrix, and d is a
given N-vector. It is assumed that M .LE. N .LE. M+P, and
rank(A) = M and rank( A B ) = N.
Under these assumptions, the constrained equation is always
consistent, and there is a unique solution x and a minimal 2-norm
solution y, which is obtained using a generalized QR factorization
of the matrices (A, B) given by
A = Q*(R), B = Q*T*Z.
(0)
In particular, if matrix B is square nonsingular, then the problem
GLM is equivalent to the following weighted linear least squares
problem
minimize || inv(B)*(d-A*x) ||_2
x
where inv(B) denotes the inverse of B.
|
TopFields Extension Methods See Also