Click or drag to resize

LinearLeastSquares Class

Computes the minimum-norm solution to a real linear least squares problem: minimize 2-norm(|| A*X - B||) involving an M-by-N matrix A. The problem can be solved using: 1) A QR or LQ factorization, 2) Complete orthogonal factorization, 3) Using singular value decomposition (SVD).
Inheritance Hierarchy
SystemObject
  DotNumerics.LinearAlgebraLinearLeastSquares

Namespace: DotNumerics.LinearAlgebra
Assembly: DWSIM.MathOps.DotNumerics (in DWSIM.MathOps.DotNumerics.dll) Version: 1.0.0.0 (1.0.0.0)
Syntax
public sealed class LinearLeastSquares
Request Example View Source

The LinearLeastSquares type exposes the following members.

Constructors
 NameDescription
Public methodLinearLeastSquares Initializes a new instance of the LinearLeastSquares class.
Top
Methods
 NameDescription
Private methodCalculateLIWORK Calcula LIWORK para ser usado en IWORK. Este programa se encuentra en el foro de preguntas de Lapack
Public methodCOFSolve(Matrix, Matrix) Computes the minimum-norm solution to a real linear least squares problem: minimize 2-norm(|| A*X - B||) using a complete orthogonal factorization of A. The matrix A can be rank-deficient.
Public methodCOFSolve(Matrix, Matrix, Double) Computes the minimum-norm solution to a real linear least squares problem: minimize 2-norm(|| A*X - B||) using a complete orthogonal factorization of A. The matrix A can be rank-deficient.
Public methodQRorLQSolve Solves overdetermined or underdetermined real linear systems involving an M-by-N matrix A, using a QR or LQ factorization of A. It is assumed that A has full rank.
Public methodSVDdcSolve(Matrix, Matrix) Computes the minimum-norm solution to a real linear least squares problem: minimize 2-norm(|| A*X - B||) using the singular value decomposition (SVD) of A. The matrix A can be rank-deficient.
Public methodSVDdcSolve(Matrix, Matrix, Double) Computes the minimum-norm solution to a real linear least squares problem: minimize 2-norm(|| A*X - B||) using the singular value decomposition (SVD) of A. The matrix A can be rank-deficient.
Top
Fields
 NameDescription
Private field_dgels 
Private field_dgelsd 
Private field_dgelsy 
Top
Extension Methods
 NameDescription
Public Extension MethodGetEnumNames
(Defined by General)
Public Extension MethodIsValidDouble
(Defined by General)
Top
See Also