Difference between revisions of "IronPython Script Snippets"

From DWSIM - Open Source Chemical Process Simulator
Jump to navigation Jump to search
Line 218: Line 218:
 
</source>
 
</source>
  
= Create pseudocompounds from Bulk C7+ Assay Data and export them to JSON files =
+
= Create Pseudocompounds from Bulk C7+ Assay Data / Export to JSON files =
  
 
<source lang=python>
 
<source lang=python>

Revision as of 15:15, 4 September 2019

Create, connect and manipulate objects

Assuming that you're running a simulation with defined compound(s) and property package(s), this will create and connect a cooler and its connections:


import clr
clr.AddReference('DWSIM.Interfaces')

from DWSIM import Interfaces

cooler = Flowsheet.AddObject(Interfaces.Enums.GraphicObjects.ObjectType.Cooler, 100, 100, 'COOLER-001')
heat_out = Flowsheet.AddObject(Interfaces.Enums.GraphicObjects.ObjectType.EnergyStream, 130, 150, 'HEAT_OUT')
inlet = Flowsheet.AddObject(Interfaces.Enums.GraphicObjects.ObjectType.MaterialStream, 50, 100, 'INLET')
outlet = Flowsheet.AddObject(Interfaces.Enums.GraphicObjects.ObjectType.MaterialStream, 150, 100, 'OUTLET')

cooler.GraphicObject.CreateConnectors(1, 1)
inlet.GraphicObject.CreateConnectors(1, 1)
outlet.GraphicObject.CreateConnectors(1, 1)
heat_out.GraphicObject.CreateConnectors(1, 1)

Flowsheet.ConnectObjects(inlet.GraphicObject, cooler.GraphicObject, 0, 0)
Flowsheet.ConnectObjects(cooler.GraphicObject, outlet.GraphicObject, 0, 0)
Flowsheet.ConnectObjects(cooler.GraphicObject, heat_out.GraphicObject, 0, 0)

# get inlet properties
inlet_properties = inlet.GetPhase('Overall').Properties

inlet_properties.temperature = 400 # K
inlet_properties.pressure = 1000000 # Pa
inlet_properties.massflow = 30 # kg/s

# the following will define all compound mole fractions to the same value so the sum is equal to 1
inlet.EqualizeOverallComposition()

# set the cooler's outlet temperature to 300 K
# http://dwsim.inforside.com.br/api_help57/html/T_DWSIM_UnitOperations_UnitOperations_Cooler.htm
cooler.OutletTemperature = 300

# set the cooler's calculation mode to 'outlet temperature'
# http://dwsim.inforside.com.br/api_help57/html/T_DWSIM_UnitOperations_UnitOperations_Cooler_CalculationMode.htm

clr.AddReference('DWSIM.UnitOperations')
from DWSIM import UnitOperations
cooler.CalcMode = UnitOperations.UnitOperations.Cooler.CalculationMode.OutletTemperature

#calculate the flowsheet
Flowsheet.RequestCalculation(None, False)

#get the outlet stream temperature and cooler's temperature decrease
deltat = cooler.DeltaT
heat_flow = heat_out.EnergyFlow

print('Cooler Temperature Drop (K):'+ str(deltat))
print('Heat Flow (kW): ' + str(heat_flow))

Getting a reference to a Compound in the simulation


mycompound = Flowsheet.SelectedCompounds['Methane']

mycompound2 = Flowsheet.GetSimulationObject['MSTR-001'].Phases[0].Compounds['Methane']

mycompound and mycompound2 are referencing the same object in memory.

Executing a script from another tab/section


import clr
import System
from System import *

clr.AddReference('System.Core')
clr.ImportExtensions(System.Linq)

# get the script text from "Functions" using LINQ
source = Flowsheet.Scripts.Values.Where(lambda x: x.Title == 'Functions').FirstOrDefault().ScriptText.replace('\r', '')

# execute the script
exec(source)

Setting the properties of a Material Stream


ms1 = Flowsheet.GetFlowsheetSimulationObject('MSTR-001')

overall = ms1.GetPhase('Overall')
overall.Properties.temperature = 200 # set temperature to 200 K
overall.Properties.pressure = 101325 # set pressure to 101325 Pa
overall.Properties.massflow = 14 # set mass flow to 14 kg/s

Getting Surface Tension and Diffusion Coefficients from a Material Stream


import clr
import System

# get feed's interfacial tension - method 1

mixphase = feed.GetPhase("Mixture")

sftens = mixphase.Properties.surfaceTension

print str(sftens) + " N/m"

# get feed's interfacial tension - method 2

sftens2 = clr.Reference[System.Object]()

feed.GetTwoPhaseProp("surfacetension", None, "", sftens2)

print str(sftens2.Value[0]) + " N/m"

# diffusion coefficients

phase = feed.GetPhase("Vapor")

compound = phase.Compounds["Methane"]

difc = compound.DiffusionCoefficient

print str(difc) + " m2/s"

Create and Display a Two-Dimensional Plot (Classic UI)


import clr

clr.AddReference("OxyPlot")
clr.AddReference("OxyPlot.WindowsForms")
clr.AddReference("System.Windows.Forms")
clr.AddReference("DWSIM.ExtensionMethods.Eto")

import OxyPlot

from OxyPlot.WindowsForms import PlotView
from System.Windows.Forms import *
from DWSIM.UI.Shared import *
from System import Array

from math import * 
x = [i * 0.1 for i in range(100)]

# generate and display a nice chart

# create a new Plot model

# http://dwsim.inforside.com.br/api_help5/html/T_DWSIM_UI_Shared_Common.htm
# http://dwsim.inforside.com.br/api_help5/html/T_DWSIM_ExtensionMethods_OxyPlot.htm

chart1 = PlotView()
chart1.Model = Common.CreatePlotModel(Array[float](x), Array[float]([sin(xi) for xi in x]), "Test", "", "x", "y") 

# update the chart data view

chart1.Model.InvalidatePlot(True)

# setup and display the chart

form1 = Form()

chart1.Dock = DockStyle.Fill

form1.Controls.Add(chart1)
form1.Invalidate()
form1.Show()

Manipulate a Splliter Block


# assuming that you have a splitter named "SPLT-001" on your flowsheet, try the following:

splitter = SPLT_001

# print the current operation mode
# http://dwsim.inforside.com.br/api_help57/html/P_DWSIM_UnitOperations_UnitOperations_Splitter_OperationMode.htm

print splitter.OperationMode

# ratios is an array which stores the relative amount for up to 3 streams. 

print splitter.Ratios[0]
print splitter.Ratios[1]
print splitter.Ratios[2]

# the sum of the three values must be equal to 1 to preserve the mass balance.

sum = splitter.Ratios[0] + splitter.Ratios[1] + splitter.Ratios[2]

print sum

# DWSIM will use the ratios when the splitter is in SplitRatios operation mode.

# if calculation mode is StreamMassFlowSpec or StreamMoleFlowSpec, set the StreamFlowSpec 
# property to the mass (kg/s) or mole (mol/s) flow value, then DWSIM will calculate the value for
# the second outlet stream to close the balance.

# if there are three outlet streams, you must set both StreamFlowSpec and Stream2FlowSpec.

Create Pseudocompounds from Bulk C7+ Assay Data / Export to JSON files


import clr
import System

clr.AddReference("DWSIM")
clr.AddReference("System.Core")
clr.AddReference("System.Windows.Forms")
clr.ImportExtensions(System.Linq)
clr.AddReference("DWSIM.Interfaces")
clr.AddReference("DWSIM.SharedClasses")
clr.AddReference("Newtonsoft.Json")

from System import *

from DWSIM import *
from DWSIM import FormPCBulk

from DWSIM.Interfaces import *
from DWSIM.Interfaces.Enums import*
from DWSIM.Interfaces.Enums.GraphicObjects import *

from DWSIM.Thermodynamics import*
from DWSIM.Thermodynamics.BaseClasses import *
from DWSIM.Thermodynamics.PropertyPackages.Auxiliary import *
from DWSIM.Thermodynamics.Utilities.PetroleumCharacterization import GenerateCompounds
from DWSIM.Thermodynamics.Utilities.PetroleumCharacterization.Methods import *

from Newtonsoft.Json import JsonConvert, Formatting

# assay data from spreadsheet

names = ["NBP46", "NBP65", "NBP85", "NBP105", "NBP115"]
relative_densities = [677.3/1000.0, 694.2/1000.0, 712.1/1000.0, 729.2/1000.0, 739.7/1000.0] # relative
nbps = [46 + 273.15, 65 + 273.15, 85 + 273.15, 105 + 273.15, 115 + 273.15] # K

n = 5

# bulk c7+ pseudocompound creator settings

Tccorr = "Riazi-Daubert (1985)"
Pccorr = "Riazi-Daubert (1985)"
AFcorr = "Lee-Kesler (1976)"
MWcorr = "Winn (1956)"
adjustZR = True
adjustAf = True

# initial values for MW, SG and NBP

mw0 = 65
sg0 = 0.65
nbp0 = 310

# pseudocompound generator

comps = GenerateCompounds()

for i in range(0, n):

    # will generate only 1 pseudocompound for each item on the list of assay data. Normally we generate from 7 to 10 pseudocompounds for each set of assay data (MW, SG and NBP)

    comp_results = comps.GenerateCompounds(names[i], 1, Tccorr, Pccorr, AFcorr, MWcorr, adjustAf, adjustZR, None, relative_densities[i], nbps[i], None, None, None, None, mw0, sg0, nbp0)

    comp_values = list(comp_results.Values)
    comp_values[0].Name = names[i]
    comp_values[0].ConstantProperties.Name = names[i]
    comp_values[0].ComponentName = names[i]

    # save the compound to a JSON file, which can be loaded back on any simulation

    #System.IO.File.WriteAllText("C:\\Users\\[YOURUSERNAME]\\Desktop\\" + str(names[i]) + ".json", JsonConvert.SerializeObject(comp_values[0].ConstantProperties, Formatting.Indented))

    # the following is for calculation quality check only, not required but desired

    myassay = SharedClasses.Utilities.PetroleumCharacterization.Assay.Assay(0, relative_densities[i], nbps[i], 0, 0, 0, 0)
    ms_check = Streams.MaterialStream("","")
    ms_check.SetFlowsheet(Flowsheet)
    ms_check.PropertyPackage = Flowsheet.PropertyPackages.Values.ToList()[0]

    c1 = Compound(names[i], names[i])
    c1.ConstantProperties = comp_values[0].ConstantProperties
    
    ms_check.Phases[0].Compounds.Add(names[i], c1)

    c2 = Compound(names[i], names[i])
    c2.ConstantProperties = comp_values[0].ConstantProperties
    
    ms_check.Phases[1].Compounds.Add(names[i], c2)

    c3 = Compound(names[i], names[i])
    c3.ConstantProperties = comp_values[0].ConstantProperties
    
    ms_check.Phases[2].Compounds.Add(names[i], c3)

    c4 = Compound(names[i], names[i])
    c4.ConstantProperties = comp_values[0].ConstantProperties

    ms_check.Phases[3].Compounds.Add(names[i], c4)

    c5 = Compound(names[i], names[i])
    c5.ConstantProperties = comp_values[0].ConstantProperties
    
    ms_check.Phases[4].Compounds.Add(names[i], c5)

    c6 = Compound(names[i], names[i])
    c6.ConstantProperties = comp_values[0].ConstantProperties
    
    ms_check.Phases[5].Compounds.Add(names[i], c6)

    c7 = Compound(names[i], names[i])
    c7.ConstantProperties = comp_values[0].ConstantProperties
    
    ms_check.Phases[6].Compounds.Add(names[i], c7)

    c8 = Compound(names[i], names[i])
    c8.ConstantProperties = comp_values[0].ConstantProperties
    
    ms_check.Phases[7].Compounds.Add(names[i], c8)

    ms_check.EqualizeOverallComposition()

    qc = QualityCheck(myassay, ms_check)
    System.Windows.Forms.MessageBox.Show(str(names[i]) + " quality report:\n\n" + qc.GetQualityCheckReport())

Other Snippets

For more code snippets, go to https://sourceforge.net/p/dwsim/discussion/scripting/.