IronPython Script Snippets
Jump to navigation
Jump to search
Contents
- 1 Create, connect and manipulate objects
- 2 Getting a reference to a Compound in the simulation
- 3 Executing a script from another tab/section
- 4 Setting the properties of a Material Stream
- 5 Getting Surface Tension and Diffusion Coefficients from a Material Stream
- 6 Create and Display a Two-Dimensional Plot (Classic UI)
- 7 Manipulate a Splliter Block
- 8 Copy PFR data profile (mole fractions) to Spreadsheet
- 9 Create Pseudocompounds from Bulk C7+ Assay Data / Export to JSON files
- 10 Setting Outlet Material Stream Properties on a Python Script Block
- 11 List Reactants and Products in a Reaction
- 12 Get the value of an Environment Variable
- 13 Get the value of a Registry Key
- 14 Other Snippets
Create, connect and manipulate objects
Assuming that you're running a simulation with defined compound(s) and property package(s), this will create and connect a cooler and its connections:
import clr
clr.AddReference('DWSIM.Interfaces')
from DWSIM import Interfaces
cooler = Flowsheet.AddObject(Interfaces.Enums.GraphicObjects.ObjectType.Cooler, 100, 100, 'COOLER-001')
heat_out = Flowsheet.AddObject(Interfaces.Enums.GraphicObjects.ObjectType.EnergyStream, 130, 150, 'HEAT_OUT')
inlet = Flowsheet.AddObject(Interfaces.Enums.GraphicObjects.ObjectType.MaterialStream, 50, 100, 'INLET')
outlet = Flowsheet.AddObject(Interfaces.Enums.GraphicObjects.ObjectType.MaterialStream, 150, 100, 'OUTLET')
cooler.GraphicObject.CreateConnectors(1, 1)
inlet.GraphicObject.CreateConnectors(1, 1)
outlet.GraphicObject.CreateConnectors(1, 1)
heat_out.GraphicObject.CreateConnectors(1, 1)
Flowsheet.ConnectObjects(inlet.GraphicObject, cooler.GraphicObject, 0, 0)
Flowsheet.ConnectObjects(cooler.GraphicObject, outlet.GraphicObject, 0, 0)
Flowsheet.ConnectObjects(cooler.GraphicObject, heat_out.GraphicObject, 0, 0)
# get inlet properties
inlet_properties = inlet.GetPhase('Overall').Properties
inlet_properties.temperature = 400 # K
inlet_properties.pressure = 1000000 # Pa
inlet_properties.massflow = 30 # kg/s
# the following will define all compound mole fractions to the same value so the sum is equal to 1
inlet.EqualizeOverallComposition()
# set the cooler's outlet temperature to 300 K
# http://dwsim.inforside.com.br/api_help57/html/T_DWSIM_UnitOperations_UnitOperations_Cooler.htm
cooler.OutletTemperature = 300
# set the cooler's calculation mode to 'outlet temperature'
# http://dwsim.inforside.com.br/api_help57/html/T_DWSIM_UnitOperations_UnitOperations_Cooler_CalculationMode.htm
clr.AddReference('DWSIM.UnitOperations')
from DWSIM import UnitOperations
cooler.CalcMode = UnitOperations.UnitOperations.Cooler.CalculationMode.OutletTemperature
#calculate the flowsheet
Flowsheet.RequestCalculation(None, False)
#get the outlet stream temperature and cooler's temperature decrease
deltat = cooler.DeltaT
heat_flow = heat_out.EnergyFlow
print('Cooler Temperature Drop (K):'+ str(deltat))
print('Heat Flow (kW): ' + str(heat_flow))
Getting a reference to a Compound in the simulation
mycompound = Flowsheet.SelectedCompounds['Methane'] mycompound2 = Flowsheet.GetSimulationObject['MSTR-001'].Phases[0].Compounds['Methane']
mycompound and mycompound2 are referencing the same object in memory.
Executing a script from another tab/section
import clr
import System
from System import *
clr.AddReference('System.Core')
clr.ImportExtensions(System.Linq)
# get the script text from "Functions" using LINQ
source = Flowsheet.Scripts.Values.Where(lambda x: x.Title == 'Functions').FirstOrDefault().ScriptText.replace('\r', '')
# execute the script
exec(source)
Setting the properties of a Material Stream
ms1 = Flowsheet.GetFlowsheetSimulationObject('MSTR-001')
overall = ms1.GetPhase('Overall')
overall.Properties.temperature = 200 # set temperature to 200 K
overall.Properties.pressure = 101325 # set pressure to 101325 Pa
overall.Properties.massflow = 14 # set mass flow to 14 kg/s
Getting Surface Tension and Diffusion Coefficients from a Material Stream
import clr
import System
# get feed's interfacial tension - method 1
mixphase = feed.GetPhase("Mixture")
sftens = mixphase.Properties.surfaceTension
print str(sftens) + " N/m"
# get feed's interfacial tension - method 2
sftens2 = clr.Reference[System.Object]()
feed.GetTwoPhaseProp("surfacetension", None, "", sftens2)
print str(sftens2.Value[0]) + " N/m"
# diffusion coefficients
phase = feed.GetPhase("Vapor")
compound = phase.Compounds["Methane"]
difc = compound.DiffusionCoefficient
print str(difc) + " m2/s"
Create and Display a Two-Dimensional Plot (Classic UI)
import clr
clr.AddReference("OxyPlot")
clr.AddReference("OxyPlot.WindowsForms")
clr.AddReference("System.Windows.Forms")
clr.AddReference("DWSIM.ExtensionMethods.Eto")
import OxyPlot
from OxyPlot.WindowsForms import PlotView
from System.Windows.Forms import *
from DWSIM.UI.Shared import *
from System import Array
from math import *
x = [i * 0.1 for i in range(100)]
# generate and display a nice chart
# create a new Plot model
# http://dwsim.inforside.com.br/api_help5/html/T_DWSIM_UI_Shared_Common.htm
# http://dwsim.inforside.com.br/api_help5/html/T_DWSIM_ExtensionMethods_OxyPlot.htm
chart1 = PlotView()
chart1.Model = Common.CreatePlotModel(Array[float](x), Array[float]([sin(xi) for xi in x]), "Test", "", "x", "y")
# update the chart data view
chart1.Model.InvalidatePlot(True)
# setup and display the chart
form1 = Form()
chart1.Dock = DockStyle.Fill
form1.Controls.Add(chart1)
form1.Invalidate()
form1.ShowDialog()
Manipulate a Splliter Block
# assuming that you have a splitter named "SPLT-001" on your flowsheet, try the following: splitter = SPLT_001 # print the current operation mode # http://dwsim.inforside.com.br/api_help57/html/P_DWSIM_UnitOperations_UnitOperations_Splitter_OperationMode.htm print splitter.OperationMode # ratios is an array which stores the relative amount for up to 3 streams. print splitter.Ratios[0] print splitter.Ratios[1] print splitter.Ratios[2] # the sum of the three values must be equal to 1 to preserve the mass balance. sum = splitter.Ratios[0] + splitter.Ratios[1] + splitter.Ratios[2] print sum # DWSIM will use the ratios when the splitter is in SplitRatios operation mode. # if calculation mode is StreamMassFlowSpec or StreamMoleFlowSpec, set the StreamFlowSpec # property to the mass (kg/s) or mole (mol/s) flow value, then DWSIM will calculate the value for # the second outlet stream to close the balance. # if there are three outlet streams, you must set both StreamFlowSpec and Stream2FlowSpec.
Copy PFR data profile (mole fractions) to Spreadsheet
import clr
import System
clr.AddReference('System.Core')
clr.ImportExtensions(System.Linq)
reactor = Flowsheet.GetFlowsheetSimulationObject("REACTOR")
profile = reactor.points
cnames = reactor.ComponentConversions.Keys.ToArray()
n = cnames.Count
Spreadsheet.Worksheets[0].Cells["A1"].Data = "Reactor Length (m)"
for i in range(0, n-1):
Spreadsheet.Worksheets[0].Cells[0, i+1].Data = cnames[i]
j = 1
for pointset in profile:
Spreadsheet.Worksheets[0].Cells[j, 0].Data = pointset[0]
tmols = 0
for i in range (1, n):
tmols += pointset[i]
for i in range (1, n):
Spreadsheet.Worksheets[0].Cells[j, i].Data = pointset[i] / tmols
j += 1
Create Pseudocompounds from Bulk C7+ Assay Data / Export to JSON files
import clr
import System
clr.AddReference("DWSIM")
clr.AddReference("System.Core")
clr.AddReference("System.Windows.Forms")
clr.ImportExtensions(System.Linq)
clr.AddReference("DWSIM.Interfaces")
clr.AddReference("DWSIM.SharedClasses")
clr.AddReference("Newtonsoft.Json")
from System import *
from DWSIM import *
from DWSIM import FormPCBulk
from DWSIM.Interfaces import *
from DWSIM.Interfaces.Enums import*
from DWSIM.Interfaces.Enums.GraphicObjects import *
from DWSIM.Thermodynamics import*
from DWSIM.Thermodynamics.BaseClasses import *
from DWSIM.Thermodynamics.PropertyPackages.Auxiliary import *
from DWSIM.Thermodynamics.Utilities.PetroleumCharacterization import GenerateCompounds
from DWSIM.Thermodynamics.Utilities.PetroleumCharacterization.Methods import *
from Newtonsoft.Json import JsonConvert, Formatting
# assay data from spreadsheet
names = ["NBP46", "NBP65", "NBP85", "NBP105", "NBP115"]
relative_densities = [677.3/1000.0, 694.2/1000.0, 712.1/1000.0, 729.2/1000.0, 739.7/1000.0] # relative
nbps = [46 + 273.15, 65 + 273.15, 85 + 273.15, 105 + 273.15, 115 + 273.15] # K
n = 5
# bulk c7+ pseudocompound creator settings
Tccorr = "Riazi-Daubert (1985)"
Pccorr = "Riazi-Daubert (1985)"
AFcorr = "Lee-Kesler (1976)"
MWcorr = "Winn (1956)"
adjustZR = True
adjustAf = True
# initial values for MW, SG and NBP
mw0 = 65
sg0 = 0.65
nbp0 = 310
# pseudocompound generator
comps = GenerateCompounds()
for i in range(0, n):
# will generate only 1 pseudocompound for each item on the list of assay data. Normally we generate from 7 to 10 pseudocompounds for each set of assay data (MW, SG and NBP)
comp_results = comps.GenerateCompounds(names[i], 1, Tccorr, Pccorr, AFcorr, MWcorr, adjustAf, adjustZR, None, relative_densities[i], nbps[i], None, None, None, None, mw0, sg0, nbp0)
comp_values = list(comp_results.Values)
comp_values[0].Name = names[i]
comp_values[0].ConstantProperties.Name = names[i]
comp_values[0].ComponentName = names[i]
# save the compound to a JSON file, which can be loaded back on any simulation
#System.IO.File.WriteAllText("C:\\Users\\[YOURUSERNAME]\\Desktop\\" + str(names[i]) + ".json", JsonConvert.SerializeObject(comp_values[0].ConstantProperties, Formatting.Indented))
# the following is for calculation quality check only, not required but desired
myassay = SharedClasses.Utilities.PetroleumCharacterization.Assay.Assay(0, relative_densities[i], nbps[i], 0, 0, 0, 0)
ms_check = Streams.MaterialStream("","")
ms_check.SetFlowsheet(Flowsheet)
ms_check.PropertyPackage = Flowsheet.PropertyPackages.Values.ToList()[0]
c1 = Compound(names[i], names[i])
c1.ConstantProperties = comp_values[0].ConstantProperties
ms_check.Phases[0].Compounds.Add(names[i], c1)
c2 = Compound(names[i], names[i])
c2.ConstantProperties = comp_values[0].ConstantProperties
ms_check.Phases[1].Compounds.Add(names[i], c2)
c3 = Compound(names[i], names[i])
c3.ConstantProperties = comp_values[0].ConstantProperties
ms_check.Phases[2].Compounds.Add(names[i], c3)
c4 = Compound(names[i], names[i])
c4.ConstantProperties = comp_values[0].ConstantProperties
ms_check.Phases[3].Compounds.Add(names[i], c4)
c5 = Compound(names[i], names[i])
c5.ConstantProperties = comp_values[0].ConstantProperties
ms_check.Phases[4].Compounds.Add(names[i], c5)
c6 = Compound(names[i], names[i])
c6.ConstantProperties = comp_values[0].ConstantProperties
ms_check.Phases[5].Compounds.Add(names[i], c6)
c7 = Compound(names[i], names[i])
c7.ConstantProperties = comp_values[0].ConstantProperties
ms_check.Phases[6].Compounds.Add(names[i], c7)
c8 = Compound(names[i], names[i])
c8.ConstantProperties = comp_values[0].ConstantProperties
ms_check.Phases[7].Compounds.Add(names[i], c8)
ms_check.EqualizeOverallComposition()
qc = QualityCheck(myassay, ms_check)
System.Windows.Forms.MessageBox.Show(str(names[i]) + " quality report:\n\n" + qc.GetQualityCheckReport())
Setting Outlet Material Stream Properties on a Python Script Block
import math
from System import Array
feed = ims1
n = int(feed.GetNumCompounds())
T = feed.GetTemperature()
P = feed.GetPressure()
H = feed.GetMassEnthalpy()
M = feed.GetMolarFlow()
W = feed.GetMassFlow()
Q = feed.GetVolumetricFlow()
comp = feed.GetOverallComposition()
#Output of Inflow Data
Flowsheet.WriteMessage("Inflow Temperature: " + str(T) + " K")
Flowsheet.WriteMessage("Inflow Pressure: " + str(P) + " Pa")
Flowsheet.WriteMessage("Inflow Specific Enthalpy: " + str(H) + " kJ/kg")
Flowsheet.WriteMessage("Inflow Mole flow: " + str(M) + " kg/s")
Flowsheet.WriteMessage("Inflow Mass flow: " + str(W) + " mol/s")
Flowsheet.WriteMessage("Inflow Volumetric flow: " + str(Q) + " m3/s")
Flowsheet.WriteMessage("Inflow Molar Composition: " + str(comp))
#Set Output
outflow = oms1
# simple way to copy stream - all required parameters are copied
outflow.Clear()
outflow.Assign(feed)
outflow.Calculate()
Flowsheet.WriteMessage("Results - Simple Method:")
Flowsheet.WriteMessage("Mass Flow in Output stream: " + str(outflow.GetMassFlow()) + " kg/s")
Flowsheet.WriteMessage("Mole Flow in Output stream: " + str(outflow.GetMolarFlow()) + " mol/s")
Flowsheet.WriteMessage("Outflow Temperature: " + str(outflow.GetTemperature()) + " K")
Flowsheet.WriteMessage("Outflow Pressure: " + str(outflow.GetPressure()) + " Pa")
Flowsheet.WriteMessage("Outflow Specific Enthalpy: " + str(outflow.GetMassEnthalpy()) + " kJ/kg")
Flowsheet.WriteMessage("Outflow Molar Composition: " + str(outflow.GetOverallComposition()))
# when working with single compounds, you must copy/set Pressure and Enthalpy because DWSIM will calculate temperature
# this is because it isn't possible to detect partial vaporization with T and P only.
outflow.Clear()
outflow.SetPressure(P)
outflow.SetMassEnthalpy(H)
outflow.SetMassFlow(W) # only needs to set one of the three possible flows (mass, mole or volumetric)
outflow.SetOverallComposition(comp)
Flowsheet.WriteMessage("Outflow Specific Enthalpy (before calc): " + str(outflow.GetMassEnthalpy()) + " kJ/kg")
outflow.Calculate()
Flowsheet.WriteMessage("Results - Standard Method:")
Flowsheet.WriteMessage("Mass Flow in Output stream (set): " + str(outflow.GetMassFlow()) + " kg/s")
Flowsheet.WriteMessage("Mole Flow in Output stream (calculated): " + str(outflow.GetMolarFlow()) + " mol/s")
Flowsheet.WriteMessage("Volumetric Flow in Output stream (calculated): " + str(outflow.GetVolumetricFlow()) + " mol/s")
Flowsheet.WriteMessage("Outflow Temperature: " + str(outflow.GetTemperature()) + " K")
Flowsheet.WriteMessage("Outflow Pressure: " + str(outflow.GetPressure()) + " Pa")
Flowsheet.WriteMessage("Outflow Specific Enthalpy: " + str(outflow.GetMassEnthalpy()) + " kJ/kg")
Flowsheet.WriteMessage("Outflow Molar Composition: " + str(outflow.GetOverallComposition()))
# or, if you don't have the enthalpy value, you can override this behavior by setting a special property to True
# http://dwsim.inforside.com.br/api_help60/html/P_DWSIM_Thermodynamics_Streams_MaterialStream_OverrideSingleCompoundFlashBehavior.htm
outflow.Clear()
outflow.SetPressure(P)
outflow.SetTemperature(T)
outflow.SetMassFlow(W)
outflow.SetOverallComposition(comp)
outflow.OverrideSingleCompoundFlashBehavior = True
Flowsheet.WriteMessage("Outflow Specific Enthalpy (before calc): " + str(outflow.GetMassEnthalpy()) + " kJ/kg")
outflow.Calculate()
Flowsheet.WriteMessage("Results - Standard Method for Single Compound Simulations:")
Flowsheet.WriteMessage("Mass Flow in Output stream (set): " + str(outflow.GetMassFlow()) + " kg/s")
Flowsheet.WriteMessage("Mole Flow in Output stream (calculated): " + str(outflow.GetMolarFlow()) + " mol/s")
Flowsheet.WriteMessage("Volumetric Flow in Output stream (calculated): " + str(outflow.GetVolumetricFlow()) + " mol/s")
Flowsheet.WriteMessage("Outflow Temperature: " + str(outflow.GetTemperature()) + " K")
Flowsheet.WriteMessage("Outflow Pressure: " + str(outflow.GetPressure()) + " Pa")
Flowsheet.WriteMessage("Outflow Specific Enthalpy: " + str(outflow.GetMassEnthalpy()) + " kJ/kg")
Flowsheet.WriteMessage("Outflow Molar Composition: " + str(outflow.GetOverallComposition()))
# using the default behavior and not setting the enthalpy value will make DWSIM do a PH flash with enthalpy equal to 0.
# resulting temperature will depend on the proeprty package and its reference state for enthalpy.
outflow.Clear()
outflow.SetPressure(P)
outflow.SetTemperature(T)
outflow.SetMassFlow(W)
outflow.SetOverallComposition(comp)
outflow.OverrideSingleCompoundFlashBehavior = False
Flowsheet.WriteMessage("Outflow Specific Enthalpy (before calc): " + str(outflow.GetMassEnthalpy()) + " kJ/kg")
outflow.Calculate()
Flowsheet.WriteMessage("Results - Default Behavior for Single Compound Simulations:")
Flowsheet.WriteMessage("Mass Flow in Output stream (set): " + str(outflow.GetMassFlow()) + " kg/s")
Flowsheet.WriteMessage("Mole Flow in Output stream (calculated): " + str(outflow.GetMolarFlow()) + " mol/s")
Flowsheet.WriteMessage("Volumetric Flow in Output stream (calculated): " + str(outflow.GetVolumetricFlow()) + " mol/s")
Flowsheet.WriteMessage("Outflow Temperature: " + str(outflow.GetTemperature()) + " K")
Flowsheet.WriteMessage("Outflow Pressure: " + str(outflow.GetPressure()) + " Pa")
Flowsheet.WriteMessage("Outflow Specific Enthalpy: " + str(outflow.GetMassEnthalpy()) + " kJ/kg")
Flowsheet.WriteMessage("Outflow Molar Composition: " + str(outflow.GetOverallComposition()))
List Reactants and Products in a Reaction
import clr
import System
clr.AddReference('System.Core')
clr.ImportExtensions(System.Linq)
# https://dwsim.inforside.com.br/api_help60/html/P_DWSIM_Thermodynamics_BaseClasses_Reaction_Components.htm
reaction = Flowsheet.Reactions.Values.Where(lambda r: r.Name == '8 Soluble Protein').FirstOrDefault()
reactants = reaction.Components.Values.Where(lambda c: c.StoichCoeff < 0).Select(lambda c: c.CompName).ToArray()
print('Reactants (R0...Rn): ' + str(list(reactants)))
products = reaction.Components.Values.Where(lambda c: c.StoichCoeff > 0).Select(lambda c: c.CompName).ToArray()
print('Products (P0...Pn): ' + str(list(products)))
inerts = reaction.Components.Values.Where(lambda c: c.StoichCoeff == 0).Select(lambda c: c.CompName).ToArray()
print('Inerts (N0...Nn): ' + str(list(inerts)))
Get the value of an Environment Variable
import System
value = System.Environment.GetEnvironmentVariable("VARNAME", System.EnvironmentVariableTarget.Machine)
print(value)
Get the value of a Registry Key
import Microsoft.Win32 from Microsoft.Win32 import Registry key = "HKEY_CURRENT_USER\\SOFTWARE\\Microsoft\\MediaPlayer\\Preferences"; valueName = "ObfuscatedSyncPlaylistsPath"; value = Registry.GetValue(key, valueName, 'defaultValueIfNotFound') print(value)
Other Snippets
For more code snippets, go to https://sourceforge.net/p/dwsim/discussion/scripting/.