Purpose
=======
DGGSVP computes orthogonal matrices U, V and Q such that
N-K-L K L
U'*A*Q = K ( 0 A12 A13 ) if M-K-L .GE. 0;
L ( 0 0 A23 )
M-K-L ( 0 0 0 )
N-K-L K L
= K ( 0 A12 A13 ) if M-K-L .LT. 0;
M-K ( 0 0 A23 )
N-K-L K L
V'*B*Q = L ( 0 0 B13 )
P-L ( 0 0 0 )
where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
upper triangular; A23 is L-by-L upper triangular if M-K-L .GE. 0,
otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective
numerical rank of the (M+P)-by-N matrix (A',B')'. Z' denotes the
transpose of Z.
This decomposition is the preprocessing step for computing the
Generalized Singular Value Decomposition (GSVD), see subroutine
DGGSVD.
Namespace: DotNumerics.LinearAlgebra.CSLapackAssembly: DWSIM.MathOps.DotNumerics (in DWSIM.MathOps.DotNumerics.dll) Version: 1.0.0.0 (1.0.0.0)
Syntax public void Run(
string JOBU,
string JOBV,
string JOBQ,
int M,
int P,
int N,
ref double[] A,
int offset_a,
int LDA,
ref double[] B,
int offset_b,
int LDB,
double TOLA,
double TOLB,
ref int K,
ref int L,
ref double[] U,
int offset_u,
int LDU,
ref double[] V,
int offset_v,
int LDV,
ref double[] Q,
int offset_q,
int LDQ,
ref int[] IWORK,
int offset_iwork,
ref double[] TAU,
int offset_tau,
ref double[] WORK,
int offset_work,
ref int INFO
)
Public Sub Run (
JOBU As String,
JOBV As String,
JOBQ As String,
M As Integer,
P As Integer,
N As Integer,
ByRef A As Double(),
offset_a As Integer,
LDA As Integer,
ByRef B As Double(),
offset_b As Integer,
LDB As Integer,
TOLA As Double,
TOLB As Double,
ByRef K As Integer,
ByRef L As Integer,
ByRef U As Double(),
offset_u As Integer,
LDU As Integer,
ByRef V As Double(),
offset_v As Integer,
LDV As Integer,
ByRef Q As Double(),
offset_q As Integer,
LDQ As Integer,
ByRef IWORK As Integer(),
offset_iwork As Integer,
ByRef TAU As Double(),
offset_tau As Integer,
ByRef WORK As Double(),
offset_work As Integer,
ByRef INFO As Integer
)
Request Example
View SourceParameters
- JOBU String
-
(input) CHARACTER*1
= 'U': Orthogonal matrix U is computed;
= 'N': U is not computed.
- JOBV String
-
(input) CHARACTER*1
= 'V': Orthogonal matrix V is computed;
= 'N': V is not computed.
- JOBQ String
-
(input) CHARACTER*1
= 'Q': Orthogonal matrix Q is computed;
= 'N': Q is not computed.
- M Int32
-
(input) INTEGER
The number of rows of the matrix A. M .GE. 0.
- P Int32
-
(input) INTEGER
The number of rows of the matrix B. P .GE. 0.
- N Int32
-
(input) INTEGER
The number of columns of the matrices A and B. N .GE. 0.
- A Double
-
(input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A contains the triangular (or trapezoidal) matrix
described in the Purpose section.
- offset_a Int32
-
- LDA Int32
-
(input) INTEGER
The leading dimension of the array A. LDA .GE. max(1,M).
- B Double
-
(input/output) DOUBLE PRECISION array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, B contains the triangular matrix described in
the Purpose section.
- offset_b Int32
-
- LDB Int32
-
(input) INTEGER
The leading dimension of the array B. LDB .GE. max(1,P).
- TOLA Double
-
(input) DOUBLE PRECISION
- TOLB Double
-
(input) DOUBLE PRECISION
TOLA and TOLB are the thresholds to determine the effective
numerical rank of matrix B and a subblock of A. Generally,
they are set to
TOLA = MAX(M,N)*norm(A)*MAZHEPS,
TOLB = MAX(P,N)*norm(B)*MAZHEPS.
The size of TOLA and TOLB may affect the size of backward
errors of the decomposition.
- K Int32
-
(output) INTEGER
- L Int32
-
( 0 0 A23 )
- U Double
-
(output) DOUBLE PRECISION array, dimension (LDU,M)
If JOBU = 'U', U contains the orthogonal matrix U.
If JOBU = 'N', U is not referenced.
- offset_u Int32
-
- LDU Int32
-
(input) INTEGER
The leading dimension of the array U. LDU .GE. max(1,M) if
JOBU = 'U'; LDU .GE. 1 otherwise.
- V Double
-
(output) DOUBLE PRECISION array, dimension (LDV,M)
If JOBV = 'V', V contains the orthogonal matrix V.
If JOBV = 'N', V is not referenced.
- offset_v Int32
-
- LDV Int32
-
(input) INTEGER
The leading dimension of the array V. LDV .GE. max(1,P) if
JOBV = 'V'; LDV .GE. 1 otherwise.
- Q Double
-
(output) DOUBLE PRECISION array, dimension (LDQ,N)
If JOBQ = 'Q', Q contains the orthogonal matrix Q.
If JOBQ = 'N', Q is not referenced.
- offset_q Int32
-
- LDQ Int32
-
(input) INTEGER
The leading dimension of the array Q. LDQ .GE. max(1,N) if
JOBQ = 'Q'; LDQ .GE. 1 otherwise.
- IWORK Int32
-
(workspace) INTEGER array, dimension (N)
- offset_iwork Int32
-
- TAU Double
-
(workspace) DOUBLE PRECISION array, dimension (N)
- offset_tau Int32
-
- WORK Double
-
(workspace) DOUBLE PRECISION array, dimension (max(3*N,M,P))
- offset_work Int32
-
- INFO Int32
-
(output) INTEGER
= 0: successful exit
.LT. 0: if INFO = -i, the i-th argument had an illegal value.
See Also