-- LAPACK routine (version 3.1) --
Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
November 2006
Purpose
=======
DGGSVP computes orthogonal matrices U, V and Q such that
N-K-L K L
U'*A*Q = K ( 0 A12 A13 ) if M-K-L .GE. 0;
L ( 0 0 A23 )
M-K-L ( 0 0 0 )
N-K-L K L
= K ( 0 A12 A13 ) if M-K-L .LT. 0;
M-K ( 0 0 A23 )
N-K-L K L
V'*B*Q = L ( 0 0 B13 )
P-L ( 0 0 0 )
where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
upper triangular; A23 is L-by-L upper triangular if M-K-L .GE. 0,
otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective
numerical rank of the (M+P)-by-N matrix (A',B')'. Z' denotes the
transpose of Z.
This decomposition is the preprocessing step for computing the
Generalized Singular Value Decomposition (GSVD), see subroutine
DGGSVD.
Inheritance Hierarchy Namespace: DotNumerics.LinearAlgebra.CSLapackAssembly: DWSIM.MathOps.DotNumerics (in DWSIM.MathOps.DotNumerics.dll) Version: 1.0.0.0 (1.0.0.0)
Syntax The DGGSVP type exposes the following members.
Constructors | Name | Description |
---|
| DGGSVP | |
| DGGSVP(LSAME, DGEQPF, DGEQR2, DGERQ2, DLACPY, DLAPMT, DLASET, DORG2R, DORM2R, DORMR2, XERBLA) | |
TopMethods | Name | Description |
---|
| Run |
Purpose
=======
DGGSVP computes orthogonal matrices U, V and Q such that
N-K-L K L
U'*A*Q = K ( 0 A12 A13 ) if M-K-L .GE. 0;
L ( 0 0 A23 )
M-K-L ( 0 0 0 )
N-K-L K L
= K ( 0 A12 A13 ) if M-K-L .LT. 0;
M-K ( 0 0 A23 )
N-K-L K L
V'*B*Q = L ( 0 0 B13 )
P-L ( 0 0 0 )
where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
upper triangular; A23 is L-by-L upper triangular if M-K-L .GE. 0,
otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective
numerical rank of the (M+P)-by-N matrix (A',B')'. Z' denotes the
transpose of Z.
This decomposition is the preprocessing step for computing the
Generalized Singular Value Decomposition (GSVD), see subroutine
DGGSVD.
|
TopFields Extension Methods See Also