DGGSVP Methods |
The DGGSVP type exposes the following members.
Name | Description | |
---|---|---|
Run | Purpose ======= DGGSVP computes orthogonal matrices U, V and Q such that N-K-L K L U'*A*Q = K ( 0 A12 A13 ) if M-K-L .GE. 0; L ( 0 0 A23 ) M-K-L ( 0 0 0 ) N-K-L K L = K ( 0 A12 A13 ) if M-K-L .LT. 0; M-K ( 0 0 A23 ) N-K-L K L V'*B*Q = L ( 0 0 B13 ) P-L ( 0 0 0 ) where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular upper triangular; A23 is L-by-L upper triangular if M-K-L .GE. 0, otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective numerical rank of the (M+P)-by-N matrix (A',B')'. Z' denotes the transpose of Z. This decomposition is the preprocessing step for computing the Generalized Singular Value Decomposition (GSVD), see subroutine DGGSVD. |
Name | Description | |
---|---|---|
GetEnumNames | (Defined by General) | |
IsValidDouble | (Defined by General) |